

1

Westward migration of oceanic ridges

and asymmetric upper mantle differentiation

Françoise Chalot-Prat,Carlo Doglioni& Trevor Falloonchalot@crpg.cnrs-nancy.frcarlo.doglioni@uniroma1.ittrevor.falloon@utas.edu.au

Chalot-Prat F., Doglioni C. & Falloon T., 2017. Lithos, 268–271, 163–173

Why? What? How?

link between plate tectonics and upper mantle compositional differentiation?

1. eastward mantle rotation implying westerly directed flow of lithosphere

How?

2. orogens, subduction zones and rifts show an "E-W" global asymmetry

What?

Why?

W

eastward mantle rotation

and tectonic equator Bostrom, 1971; Doglioni 1990

Scoppola et al 2006

LITHOSPHERE

 $-\omega_1$

MANTLE & COR

EARTH'S ROTATION

ω

Why? What? How?

interdependence between

- oceanic spreading process
- upper mantle differentiation
- plate kinematics driven by the westward drift of the lithosphere

Why? What? How?

integration in space and time of

- geophysical data on oceanic plates and asthenosphere
- petrological data on mantle (>>> 300 km depth) and basalt
- structural data on oceanic detachment faults

Starting point of our brainstorming: geophysical data

plate asymmetry on both sides of spreading ridge

- flank bathymetry: shallower E
- plate Vs (Vµ/ρ): slower E
- plate thickness: thinner E

westward rotation of the lithosphere

plate velocity asymmetry

- velocity variationsfrom one plate to another
- induced by viscosity variations of underlying low-velocity zone
- inducing rifting and subduction

subduction

rifting process

... when eastern plate velocity slower than western plate velocity

westward ridge migration <u>and</u> oceanic spreading ?

upper asthenosphere asymmetry

- LVZ mainly below oceans
- "solid+incipient melt" area
- Iength: larger W
- thickness: higher W
- Vs ($\sqrt{\mu}/\rho$): slower W
- \blacktriangleright lower μ W-ward

upper asthenosphere (LVZ) ≈ **decoupling level** between lithosphere and lower asthenosphere

Preliminary global model from Panza et al, 2010

ridge migration has a key-role in producing plate and asthenosphere **asymmetry**

- ★ plate uplift + rift melting area
- ★ ± residual E-asthenosphere

- migration of melting area
 with Vr > hS
- ★ lower "refertilisation + thickening + subsidence" of E-plate (B)

"En route" for an alternative plate spreading model

integrating our updated knowledge on mantle petrology

lithosphere in our model

plate A : strongly re-enriched harzburgitic mantle

plate B : barely re-enriched harzburgitic mantle

mantle vapour-saturated solidus ≈100 km

detachment faults

path & direction of mantle transfer by spreading

half-spreading residues

strongly re-enriched in plate A

barely re-enriched in plate B

asymmetry of mantle lithosphere

density + rigidity

how eastern plate B becomes less dense and rigid than western

plate A? Loosing Fe and cooling becomes more viscous viscous

► at spreading axis → mantle residue accretion at base of lithosphere (≥ 30km) + basalt upwards percolation
→ mantle thickening and mantle residue refertilisation

➤ as Vr > hS → refertilisation and thickening are much less significant in the eastern limb (plate B)

♦ plate A mantle: secondary lherzolite

♦ plate B mantle: barely refertilized harzburgite

why a plate thickness between 80 and 100 km?

asymmetry of mantle lithosphere

how is mantle transfer organized for fitting both with oceanic spreading and W-ward drift of the lithosphere ?

half-spreading residues

- strongly re-enriched in plate A
- barely re-enriched in plate B

asymmetry of mantle lithosphere

how is mantle transfer organized for fitting both with oceanic spreading and W-ward drift of the lithosphere ?

- > Residues successively transferred upwards and laterally at hS rate within the mantle lithosphere
- As Vr > hS → bending of the path followed by the mantle transfer towards the surface
- As asthenosphere moves "eastward" relative to the lithosphere, the westward drift of the lithosphere is necessarily slowed down at its base, inducing a TOP to DOWN DECOUPLING within the mantle lithosphere
- DETACHMENT FAULTS, large offset low-angle faults capping the eastern (rarely western) side of oceanic mantle core complexes (OCC), are effects of top to bottom asymmetric lithospheric mantle shear

asthenosphere in our model

geophysical data

NO relevant asymmetry of lower asthenosphere wrt LVZ

petrological data from N-MORB and mantle experimental data

lower asthenosphere is the N-MORB mantle source

- below 7 GPa / 230 km
- at 1490 °C
- fertile garnet lherzolite
- depleted in the most incompatible TE
- with \geq 200 ppm H₂O

geophysical data

asymmetry of upper asthenosphere (LVZ)

W-ward

- thicker (130 vs 100km)
- more developed (2/3 in volume)
- Vs ($\sqrt{\mu}/\rho$) slower
- lower rigidity μ
 because of incipient melting

decoupling and shear heating
→ T°C 7 30-120°C
→ 7 incipient melting

Panza et al. 2010

petrological data from OIB and mantle experimental data

upper asthenosphere is the OIB mantle source

- along intraplate geotherm
- "solid + incipient melt (0.05-0.1%)"
- garnet to spinel lherzolite
- > TE enriched

petrological data from OIB and mantle experimental data

with shear heating effect, shallower OIB mantle sources

- along intraplate geotherm
- "solid + incipient melt (0.05-0.1%)"
- with shear heating (up to 120°C)
- melting increases up to
 1.5% at shallower depth

petrological data from N-MORB and mantle experimental data

double origin for uppermost asthenosphere

why a larger "solid + incipient melting" area on the western side?

- → oblique, and not vertical, mantle ascent from lower to upper asthenosphere
- \rightarrow 2 \neq paths of transfer according to the entrance angle
 - \succ main path \rightarrow very low entrance angle
 - \succ single path \rightarrow more opened entrance angle

why a larger "solid + incipient melting" area on the western side?

- \blacktriangleright main path \rightarrow very low entrance angle trajectory
 - emerging rather far laterally (> 500 km) from the ridge
 - barely deviated in passing below the ridge
 - OIB mantle sources

why a larger "solid + incipient melting" area on the western side ?

- \succ single path \rightarrow more opened entrance angle trajectory
- emerging at a shorter distance from the ridge (≤ 500 km)
- induced by isostatic suction of the migrating spreading ridge
- the one producing MORB, permanently renewed because of the westward drift of lithosphere

why eastern upper asthenosphere has a faster Vs?

somewhat Fe-depleted, but above all fluid-depleted
 rigidity μ increase and density ρ decrease

higher rigidity of the eastern LVZ \rightarrow higher coupling with overlying plate B \rightarrow slower velocity plate B

Why? How? What?

plate tectonics induces upper mantle differentiation

strong mechanical effects of "westward ridge migration + plate spreading" on lateral and upwards mantle transfers, \rightarrow on mantle partial melting and percolation/reaction processes \rightarrow on mantle differentiation ... and in turn on plate spreading !

Why? How? What?

mantle lithosphere

- ✓ higher mantle refertilisation of the western plate
- intra-mantle decoupling inducing detachment faults and exhumation of core complexes

asthenosphere

- eastward strongly oblique mantle upwelling from lower asthenosphere & MORB genesis
- eastward slightly oblique mantle upwelling of upper asthenosphere & OIB genesis

