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Abstract 

 

The Siberian Craton was affected by flood basalt volcanism at least twice during Devonian 

(Yakutsk-Vilyui province) and Permian-Triassic (Siberian province) periods. In both cases 

volcanism appeared as brief pulses of flood basalt eruptions, followed by kimberlitic (and 

lamproitic) emplacement. Pressure estimations for the kimberlite-entrained mantle xenoliths 

reflect that lithosphere was 190-230 km thick at the time of the Devonian flood basalt 

volcanism. Differently from Devonian kimberlites, the majority of Triassic kimberlites are 

diamond-free, but at least one Triassic kimberlite pipe and some lamproites are 

diamondiferous, suggesting that the Siberian lithosphere remained thick during the Permian-

Triassic flood basalt volcanic activity. If both the lithosphere and the asthenosphere were 

volatile-poor, thick cratonic lithosphere prevented melting even at elevated geotherm. During 

Paleozoic, Siberia was surrounded by subduction systems. The water deep cycle in 

association with fast subduction and slab stagnation in the mantle transition zone is proposed 

to cause fluxing of the asthenosphere by water plus other fluids via wet diapir formation in the 

mantle transition zone. Such diapirs started to melt in the asthenosphere beneath thick 

cratonic lithosphere producing voluminous melts. Probably mafic melts accumulated beneath 
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cratonic lithosphere and rapidly erupted on the surface in response to stress-induced drainage 

events as assumed for some other cratonic flood basalts.  
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INTRODUCTION 

 

The origin of large igneous provinces (LIPs) is one of the most intriguing and 

unresolved geological problems. The essential features of LIPs are the particularly large size 

of volcanically active regions and the significant volume of magma erupted at higher than 

normal rate. Of course, such definition includes some poorly defined categories such as 

‘large’, ‘significant’ and ‘normal’, whereas there is no sharp threshold value distinguishing 

LIPs from other types of volcanic provinces (e.g., Foulger, 2010). However, a consensus is 

that a LIP is characterized by size of >0.5-1105 km2 and the volume in excess of 0.5-1105 

km3 emplaced during short duration volcanic pulses with overall duration of order of one 

million year or even shorter (e.g., Coffin and Eldholm, 1994; Sheth, 2007; Bryan and Ernst, 

2008; Ivanov et al., 2013; Konstantinov et al., 2014; Ernst, 2014). The pulsing nature of 

volcanism distinguishes LIPs from other long-lasting provinces such as associated with 

oceanic spreading ridges and active continental margins. 

It is generally believed that some abnormal geological processes either in the Earth’s 

core, mantle and/or crust caused the LIP origin. Numerous models have been proposed and 

they can be subdivided into those considering terrestrial and extraterrestrial (meteorite impact) 

causes of the LIP volcanism. Extraterrestrial models are not considered here, but interested 

readers can check the abundant literature existing with pro- (Jones et al., 2002; Ingle and 

Coffin, 2004; Hagstrum, 2005) and counterarguments (Ivanov and Melosh, 2003; Korenaga, 

2005; Ivanov et al., 2013). As for the terrestrial models, they can be separated by the depth of 

origin (from deep to shallow) to a number of different type models; lower mantle plume (e.g., 

Campbell, 2005), transition zone wet plume/diapir (Ivanov and Litasov, 2014), upper mantle 

heat redistribution (e.g., King and Anderson, 1998), lithospheric delamination (e.g., Elkins-

Tanton, 2005) and intralithospheric tectonic processes (Devès et al., 2014). 
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Cratonic flood basalt volcanism, an important subclass of the LIPs, is of particular 

interest because it is typically emplaced through thick and cold lithosphere. A cold cratonic 

geothermal gradient is expected to prevent melting of the lithosphere, whereas thick 

lithosphere hampers melting at sub-lithospheric depths due to the pressure effect, which 

suppress magma generation (here lithosphere is defined as a volume from the surface down to 

the base of the thermal boundary layer (McKenzie and Bickle, 1988)). The melt production 

preventing is especially true if the source of melting is volatile-free. At a normal mantle 

geothermal gradient, assuming that we know what is the norm (e.g., Turcotte and Schubert, 

2002), dry peridotite starts melting if lithosphere is thinned to about 60 km depth or shallower 

(Fig. 1). For melting of dry pyroxenite and eclogite the reduction of the lithospheric thickness 

could be to deeper levels; about 80 and 130 km, respectively (Fig. 1). If not thinned, the 

cratonic lithosphere at such depth is too cold for generation of magma unless it is volatile-rich 

(Fig. 1). Devès et al. (2014) provided a model of lithospheric heating due to shearing, but 

obviously, such a model predicts highly localized melting, whereas continental flood basalts 

are often characterized by enormous spatial extent, even considering that the lava field is 

larger than the source of melting. In addition to that, significant displacement of lithospheric 

block is not expected for intracratonic areas.  

High temperature within an upwelling mantle plume, which is up to 300 degrees 

higher compared to a normal mantle (e.g., Campbell, 2005), or increasing temperature due to 

upper mantle internal warming (radioactivity, reorganization of convective flow, thermal 

blanketing by supercontinents etc.) to about the same high temperature (e.g., King and 

Anderson, 1998; Coltice et al., 2007; Anderson, 2011) may produce melting of the eclogitic 

part of a composite thermochemical plume (Yasuda and Fujii, 1998; Sobolev et al., 2011), 

floating eclogitic blob (Korenaga, 2004; Anderson, 2007) at the base of thick cratonic 

lithosphere (Fig. 1). However, generation of a high volume flood basalt province would still 



 5 

require thinning of the lithosphere either via rifting or delamination and further 

decompression melting irrespective of the assumed source of the eclogite, delaminated 

continental crust (e.g., Anderson, 2005; Lustrino, 2005) or recycled oceanic crust (e.g., 

Korenaga, 2004; Sobolev et al., 2011). Melting of within lithospheric metasomatic veins 

(carbonated or micaceous) is possible with slightly elevated temperature from the cratonic 

geotherm, but there should be a reasonable explanation for the increase of the temperature. 

Usually, heating from a plume is invoked (e.g., Gallagher and Hawkesworth, 1992). 

In other words, assuming the cratonic geotherm as illustrated in Fig. 1 and dry mantle, 

melting of the cratonic lithospheric or sub-lithosheric mantle is possible only for the eclogitic 

portions possibly present within the peridotite matrix. Due to this fact, there are only two 

potential options to originate cratonic flood basalts without requiring temperature excesses. 

Cratonic flood basalts can be generated only if the depth of melting decreases via rifting 

and/or lithospheric delamination or if the source of melting is fluxed by volatiles such as H2O, 

CO2 (Fig. 1) and probably F (Brey et al., 2009). Combination of the two processes (thinning 

and fluxing) is also possible. Another alternative is that magma forms along thinner cratonic 

lithosphere edges, i.e. the loci of ancient suture zones (e.g., King and Anderson, 1998). In 

such case a lateral emplacement of radiating dyke swarms for distance of 1000 km or even 

2000 km into the interior of the craton from its margin is required (e.g., Ernst et al. 2005; 

Ernst, 2014). 

In this paper, I consider two flood basalt provinces; Yakutsk-Vilyui and Siberian, 

which were emplaced onto the Siberian Craton in Devonian and Permian-Triassic, 

respectively. I provide evidence that the lithosphere remained thick during the flood basalt 

volcanism. I suggest the mechanism of volatile fluxing in association with subduction and 

transition zone slab stagnation processes beneath Siberia.  
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WHAT IS THE PLUME? 

 

 According to fluid dynamic definition, a plume is any self-buoyancy driven mass flow 

(Korenaga, 2005). In this sense practically any motion within the Earth’s mantle should be 

considered as plume including subducting slabs and sinking delaminated portions of 

lithosphere. These lead to the situation when scientific literature is overwhelmed by the term 

‘plume’ used in variously possible meanings. There are super- and secondary plumes, 

Morganian and Andersonian plumes, lower mantle, transition zone and wedge plumes, 

thermal, thermochemical, hot, cold and wet plumes among others (e.g., Courtillot et al., 2003; 

Gerya and Yuen, 2003; Campbell, 2005; Gerya et al., 2006; Zorin et al., 2006). Overuse of 

the term plume often results in misunderstanding what is actually meant. To overcome this 

problem, the term plume should be specifically defined. Here I use the term plume in its 

original sense (Morgan, 1971; Campbell, 2005), that the plume is a thermally- and buoyancy-

driven solid mass flow, which originates in the lowermost mantle. Usually such plumes are 

thought to contain two major parts; a large head (~1000 km in diameter) followed and feed by 

a thin tail (<100 km in diameter) (Campbell, 2005). Plumes are not, at least directly, related to 

the plate tectonic processes and probably provide driving forces for the plates (Morgan, 

1971). If the plume contains subducted lithologies, it can be referred to as thermochemical 

plume. Any other buoyancy-driven solid mass flows associated with slabs, delaminated 

lithosphere, upper mantle convective motions are not considered here plumes. They are plate 

tectonics-related phenomena. I suggest using for the plate-tectonic related upwelling flows the 

traditional term ‘mantle diapir’. Location of a mantle plume and associated volcanic province 

is unpredictable from the plate tectonic reconstructions (but see the contrary view by Burke et 

al., 2008).  
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SIBERIAN CRATON AND ITS FLOOD BASALT PROVINCES 

 

 The Siberian Craton is a structure composed of the Paleoarchean to Paleoproterozoic 

blocks, which were welded together during a Paleoproterozoic episode of magmatism and 

metamorphism that peaked at about 1.87 Ga (Gladkochub et al. 2006; Rojas-Agramonte et al. 

2011). After that time, the Siberian Craton represented a single, large tectonic block, which 

was a constituent part of the supercontinents Nuna/Columbia (Paleoproterozoic), Rodinia 

(Mesoproterozoic) and Pangea (Paleozoic) and between the supercontinent cycles it acted as 

core of a separate continental block referred to as Siberian continent (Cocks and Torsvik, 

2007; Li et al., 2008; Domeier and Torsvik, 2014). 

In the Phanerozic, the Siberian Craton experienced flood basalt volcanism at least 

twice, during Devonian (e.g., Kiselev et al., 2012) and Permian-Triassic (e.g., Ivanov et al., 

2013). The Precambrian flood basalt provinces on the Siberian Craton are inferred from dyke 

records. Ernst (2007) argues that mafic/ultramafic dykes with average width of >10 m are 

indicators for being feeders of a flood basalt province. The Paleoproterozoic dykes are well 

known within the Siberian Craton (Gladkochub et al., 2010; Ernst et al. 2013; Ernst et al. 

2014). Recent data indicates on a ~1 Ga mafic/ultramafic event within the Siberian craton 

(Ivanov et al., 2012; Savel’eva et al., in press). Here I focus only on the Phanerozoic flood 

basalt provinces. 

The Devonian Yakutsk-Vilyui flood basalt (YVFB) province is located mainly within 

a large Vilyui rift (Fig. 2). Numerous Devonian dykes and sills are known over a larger 

portion of the eastern Siberian Craton and they are considered as constituent part of the 

YVFB province with eroded lava (Kiselev et al., 2012). Volcanic and intrusive rocks of the 

YVFB are mainly low magnesium basalts of both the high- and low-Ti series (Fig. 3). High-

Ti basalts are predominant. Typical rock compositions are provided in the Table 1, whose 
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primitive mantle (McDonough and Sun, 1995) normalized incompatible element spectra are 

shown in Fig. 4. Evolved rocks such as mugearites and benmoreites are also present. The 

limited compositional variability of the YVFB could be an artefact of the insufficient 

analytical data, however.  

The YVFB province is poorly dated, but available geochronological data, mainly 

40Ar/39Ar ages (Courtillot et al., 2010; Ricci et al., 2013; Kiselev et al., 2014; Ivanov et al., 

submitted) and only two U-Pb ages (Powerman et al., 2013), suggest that volcanism appeared 

in pulses (Fig. 5). U-Pb ages of kimberlites (Kinny et al., 1997), combined with geologic 

constraints (Kiselev et al., 2014) indicate that emplacement of the kimberlitic magma 

followed mafic volcanism (Fig. 5, Ivanov et al., submitted), not the vice versa as would be 

expected from lithoshperic thinning model of the flood basalt formation. Many of the 

Devonian kimberlites of the Siberian Craton are diamondiferous, suggesting that lithosphere 

was thick enough for preservation of diamonds. 

PT estimates for the Devonian kimberlite-entrained mantle xenoliths show that the 

lithosphere within the Siberian Craton was 190-230 km thick depending on location (Griffin 

et al., 1999). 

The Siberian flood basalt (SFB) province is much larger than the YVFB province (Fig. 

2). About a half of the SFB province was emplaced onto the Siberian Craton. Another half 

was emplaced within the younger lithosphere of the rifted West Siberian Basin. Unlike the 

YVFB, the SFB is characterized by much larger chemical variation of magma compositions 

(Fig. 3). The volcanic and intrusive rocks of both provinces belong to both high- and low-Ti 

rock series. The high-Ti rock series is characterized by large variations in MgO content from 

low magnesium basalts to high magnesium meimechites and dunites. The latter are likely 

cumulates of the primary meimechite magmas. Low-Ti basalts are uniform in composition 

and represent up to 80% of the total volume of the SFB (Ivanov, 2007). Typical low- and 
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high-Ti basalt compositions are listed in the Table 1 and their primitive mantle (McDonough 

and Sun, 1995) normalized incompatible element spectra are shown in Fig. 4. Felsic volcanic 

rocks are also present, but they are rare. Granites are abundant on the southern and northern 

periphery of the SFB (Vernikovsky et al., 2003; Dobretsov et al., 2005). In addition to the 

felsic magma, within the SFB there were eruptions of carbonatites, which are spatially 

associated with meimechites (Fedorenko and Czamanske, 1997; Kogarko and Zartman, 

2007).  

Similarly to the YVFB province, the SFB province formed in pulses (Ivanov et al., 

2013). The major volcanic pulse was coeval with the Permo-Triassic boundary (Renne and 

Basu, 1991; Reichow et al., 2002; 2009; Kamo et al., 2003; Svensen et al., 2009; Paton et al., 

2010). A later Middle Triassic pulse is also recognized (Ivanov et al., 2005; 2009; 2013; 

Reichow et al., 2009). During Triassic, the Siberian Craton was affected by kimberlitic 

(Kinny et al., 1997) and lamproitic (Ivanov et al., 2013; Letnikova et al., 2013) volcanism. 

The kimberlitic and lamproitic volcanism followed the mafic volcanism (Fig. 5). The majority 

of Triassic kimberlites are diamond-free, which, in combination with relatively shallow 

pressure estimates for mantle xenoliths entrained in the kimberlites, was taken as evidence for 

thinning of the lithosphere to 150 km (above the diamond stability field) due to the Siberian 

flood basalt volcanism (Howarth et al., 2014a). However, all known diamond-free Triassic 

kimberlites are located either outside the Siberian flood basalts or near its marginal parts (Fig. 

2). Exception is the Malokuonapsky kimberlite pipe, which contains industrially-grade 

diamond deposit (Khar’kiv et al., 1998; Sobolev et al., 2013). 

A diamond-rich deposit of lower Carnian age tuffs (237 Ma for the Carnian/Landian 

boundary according to the latest Triassic timescale of Ogg et al., 2014) is known in the north-

eastern Siberian Craton with non-kimberlitic diamonds of so-called morphologic variety V; 

octahedral habit diamonds with syngenetic graphitic inclusions (e.g., Zinchuk et al., 1999; 
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Ragozin et al., 2009; Grakhanov and Koptil’, 2003; Shatsky et al., 2014). The composition of 

the tuffs suggests that their sources (and probably the source of diamonds) were lamproitic 

pipes and dykes (Letnikova et al., 2013). 

Until recently, Carnian age lamproite intrusions were not known for the Siberian 

Craton. Ivanov et al. (2013) obtained 238 to 235 Ma 40Ar/39Ar ages for a lamproite sample, 

thus straddling Ladinian-Carnian (Ogg et al., 2014). The dated lamproite is located within the 

Noril’sk section of the Siberian flood basalt province (Fig. 2). Potential connection of 

lamproites and diamonds of the variety V suggests that at least some parts of the Siberian 

lithosphere remained thick (base of the lithosphere was below the diamond stability field) in 

the Triassic. Peridotitic source for the dominant low-Ti tholeiites of the SFB province was 

inferred from geochemical data, whereas volumetrically less abundant high-Ti basalts could 

be derived from eclogite-bearing source (Ivanov, 2007; Sobolev et al., 2009a). Seismic data 

on the present-day lithospheric structure of the Siberian Craton suggests that it is thicker than 

180 km everywhere (Priestley and McKenzie, 2006; Pasyanos, 2010), which is another 

evidence for thick and unperturbed Siberian lithosphere. 

 These two examples of cratonic flood basalts return us to the question how can the 

large volume of mafic magma be produced within cold or under Siberian thick cratonic 

lithosphere? Eclogitic source alone is not enough. Although the Siberian mantle contains 

metasomatic zones with phlogopite (e.g., Solov’eva et al., 2012) and the nominally anhydrous 

upper mantle minerals from xenoliths contain up to ~300 ppm of H2O (Doucet et al., 2014), 

these xenoliths may represent material located near melt conduits and thus may not represent 

the bulk of the cratonic lithosphere (Doucet et al., 2014). Apparently, the flux of volatiles like 

H2O, CO2 and probably F, all species that can significantly decrease the temperature of 

melting of upper mantle rocks (Wallace and Green, 1988; Sato et al., 1997; Brey et al., 2009), 

could solve the problem.  
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GEODYNAMIC SETTING OF THE YVFB AND SFB PROVINCES 

 

 Fig. 6 shows paleogeographic reconstructions (Domeier and Torsvik, 2014) in 

Devonian (390 Ma) and Permian (270 Ma) times, thus ~20 Ma before the major pulses of the 

YVFB and SFB provinces, respectively. In Devonian, the Siberian continent was bounded to 

the paleo-South by a subduction system involving recycling of the Rheic Ocean and to the 

paleo-North and to the paleo-West by spreading systems of the Mongolia-Okhotsk Ocean 

(Fig. 6). However, further to the paleo-North and to the paleo-West there were other 

subduction systems and thus, in a broader sense, the Siberian continent was surrounded by 

Devonian subduction systems from every side. Distances from the reconstructed paleo-arcs to 

the margins of the YVFB province varied from about 1 to 2 thousand km. In the late 

Devonian, the Siberian continent was characterized by another volcanic activity, named the 

Altai-Sayan Province (Vorontsov and Sandimirov, 2010; Vorontsov et al., 2013) located 

closer to the continental boundary (Fig. 2, 6). Although the Altai-Sayan Province was 

considered as plume-related, the volcanic rocks show subduction-related incompatible 

element patterns in primitive mantle-normalized plots (Vorontsov et al., 2013) similar to some 

other flood basalt provinces (e.g., Puffer, 2001). 

 In the late Permian, Siberia was at the northern end of the supercontinent Pangea (Fig. 

6). Two subduction systems influenced this part of the Pangea: the Mongolia-Okhotsk slab 

and Paleotethys slab subducting towards paleo-Southwest and paleo-Northwest, respectively. 

The SFB province covered an enormous territory of ~7106 km2 (Ivanov, 2007). The closest 

distance from the reconstructed Mongolia-Okhotsk subduction system to the margin of the 

SFB province was ~700-800 km (Ivanov and Litasov, 2014) and from the Paleotethys it was 

more than 2000 km (Fig. 6). In Triassic, there was another volcanic province formed closer to 
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the Paleotethys subduction in Fore-Caucasus region (Chalot-Prat et al., 2007). The Fore-

Caucasus volcanism was considered as within-plate, but it is characterized by clear 

subduction-related incompatible element signature (Chalot-Prat et al., 2007). The Emeishan 

flood basalt province, which formed in the late Permian was located even in closer association 

with subduction systems (Fig. 6). Despite this province is considered by many as plume-

related (e.g., Campbell, 2005; Shellnutt, 2014), it also has subduction-like incompatible 

element signatures (e.g., Zhu et al., 2005; Shellnutt, 2014).  

The low-Ti ‘subduction’ signature is commonly considered as either lithospheric 

contribution or crustal contamination (e.g., Lightfoot et al., 1993; Wooden et al., 1993; 

Hawkesworth et al., 1995; Reichow et al., 2005; Jourdan et al., 2007; Kiselev et al., 2012). 

From the Table 1 it may be seen that there is no significant difference between high-Ti 

(conventionally considered uncontaminated) and low-Ti (often considered contaminated) 

basalts in terms of Nd and Sr isotopes. Thus, similar isotopic ratios for the high- and low-Ti 

basalts are ruling out crustal contamination for the low-Ti basalt, which exhibit ‘subduction’ 

signatures (relative depletion of Nb and relative enrichment of Sr and Pb) in the incompatible 

element normalized plots (Fig. 4). It should be emphasized, that lithospheric and crustal 

contamination is likely for the flood basalts, but it cannot explain the voluminous low-Ti 

basalt series as a whole, at least in case of the SFBB (Ivanov, 2007; Ivanov et al., 2008). 

 Considering the paleotectonic settings for the Siberian Craton flood basalt provinces, it 

should be stated that both flood basalt provinces under consideration were located in far back-

arc setting. Such a connection between the Permian-Triassic subduction systems and the SFB 

province was noted previously by Cox (1978) and Nikishin et al. (2002). The association of 

the YVFB province to subduction systems is made here for the first time. 
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Ernst (2014) noted that most of the continental flood basalt provinces are located in 

back-arc regions within 1000-2000 km from the corresponding arc systems. However, he 

questioned that such large distances should allow consideration of such setting as ‘back-arc’.  

However, modern examples show that the great majority of slabs stagnate in the mantle 

transition zone and propagate hundreds to thousands km under continents (Fukao et al., 2001; 

2009). Thus, there is a physical way to explain how flood basalts could be linked to 

subduction; this link was originally suggested many years ago by Cox (1978) without 

knowing the stagnant slab phenomenon. 

 

DISCUSSION 

 

 In a previous section, I have shown that diamondiferous kimberlites and lamproites 

emplaced after (not before) flood basalt volcanism, suggesting that lithosphere was thick 

before, during and after generation of the flood basalt magma. Unless the cratonic flood 

basalts were not fed laterally through crustal dykes, whose original source was located in a 

region of thin lithosphere, the large thickness of the cratonic lithosphere requires the solidus 

of melting to be depressed by volatile fluxing; H2O, CO2 and may be F. Such a requirement 

for depressing mantle solidus for origin of flood basalts (and ‘hot spots’) was noted by many 

others (e.g., Bonatti, 1990; Gallagher and Hawkesworth, 1992; Anderson, 1995; Puffer, 2001; 

Silver et al., 2006).  

Gallagher and Hawkesworth (1992) assumed that the lower portion of the cratonic 

lithosphere is wet and weak, but proposed the presence of a hot upwelling mantle plume as a 

source of heat for production of the continental flood basalts. Anderson (1995) argued that 

such weak layer, referred to as perisphere, cannot be locally stable due to its rheology and 

should spread laterally. According to Anderson (1995), the perisphere is located between 
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strong lithosphere defined by ~650 oC isotherm and convecting asthenosphere. It is deeper 

beneath continents and shallower beneath oceans. Deformed peridotites (Fig. 1) are the 

candidates for the perisphere beneath the cratons, though the equilibration temperature of the 

deformed peridotites is >1100 oC. Anderson (1995) assumed that perisphere is wet and could 

be created at mantle wedges above subducting slabs in the geologic past. Later this concept 

was transformed to the Laminated Lithology with Aligned Melt Accumulations (LLAMA) 

model, which was applied for oceanic regions (Anderson, 2011). In terms of continents, flood 

basalts are expected along cratonic boundaries where lithosphere is thin, not beneath the 

central parts of thick cratons. 

Puffer (2001) used a concept, which resembles both the wet lithosphere (Gallagher 

and Hawkesworth, 1992) and the perisphere (Anderson, 1995) models. He showed that some 

flood basalt provinces (e.g., Karoo, Siberian and Central Atlantic Magmatic Province) are 

characterized by incompatible element patterns similar to the island arc basalts, whose origin 

is indisputably associated with water fluxing from subducting slabs (e.g., Stern, 2002). 

Further, Puffer (2001) assumed that the magma source of such subduction-type flood basalt 

provinces is located within paleo-subduction mantle wedges, which underplated the cratonic 

lithosphere in some geologic past. According to Puffer (2001), the reactivation of such low 

solidus lithospheric/perispheric mantle can produce flood basalt provinces. Many 

interpretations of continental flood basalts as being sourced from lithospheric mantle (e.g. 

Jourdan et al., 2007; Kamenetsky et al., 2012) are conceptually the same as Puffer’s (2001) 

model. 

Silver et al. (2006) noted the importance of subduction-derived fluids in the cratonic 

flood basalts too. The new idea introduced by Silver et al. (2006) was that the rate of magma 

production at depth and the rate of magma eruption on the surface are not the same, with the 

latter being much faster compared to the former. Magma is probably accumulated for 
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prolonged geological time in mantle and erupted quickly due to a tectonic venting event. This 

is of particular importance for the extremely short (Konstantinov et al., 2014) and pulsing 

(Ivanov et al., 2013) nature of flood basalts. 

The concept, which is preferred in this paper (Fig. 7), is reviving the idea of direct and 

genetic connection between the flood basalt volcanism and subduction (Cox, 1978). Cox 

(1978) noted that some flood basalt provinces, including those later identified by Puffer 

(2001) as subduction-type, were located in back-arc setting and could be directly linked to 

subduction processes. 

Subduction is a long-lasting process, which continues for tens and hundreds of Ma. 

Flood basalt volcanism is pulsing and of short duration (few Ma). In the frame of the 

subduction concept, the flood basalt phenomenon is related to unusual mode of ultrafast 

subduction. The faster subduction the colder slab penetrates to deep levels without degassing 

beneath volcanic arcs (Ivanov and Litasov, 2014). If the rate of subduction is in the order of 

20 cm/yr (similar to convergence rate at Tonga trench; Bevis et al., 1995), most of the water 

budget can probably be subducted down to the mantle transition zone in form of solid ice VII 

(Bina and Navrotsky, 2000) or other hydrous phases stable at high T (e.g., antigorite, phase 

10-Å, phase A; Litasov and Ohtani, 2013; Schmidt and Poli, 2014; Fig. 6). 

Slabs tend to stagnate in the mantle transition zone and can probably move 

horizontally for large distances underplating convecting upper mantle beneath continents. 

After some period of time, the stagnant slabs are inevitably heated up to the ambient mantle 

temperature and rapidly dehydrate. Dehydration induces hydrous melting in the mantle 

transition zone and a composite mantle diapir can rise up creating flood basalt province on the 

surface (Fig. 7). Alternatively, the released water is incorporated into ringwoodite and/or 

wadsleyite, the major water-bearing minerals of the mantle transition zone (Ohtani, 2005). 

Hydrated ringwoodite and wadsleyite are characterized by increasing volume; for example, in 
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experiments at zero pressure 0.5 % of water in wadsleyite produces the same effect on crystal 

volume as about heating by 240 degrees and the effect for ringwoodite volume increase is 

about double of that for wadsleyite (Smyth and Jacobsen, 2006). Despite that there is no 

experiments on effect of water on the thermal expansivity at high pressure, it is generally 

agreed that a hot plume is not the only reason for creation of buoyant diapirs, water can do the 

work instead of temperature (Gerya and Yuen, 2003; Gerya et al., 2006; Faccenda, 2014). 

Experiments show that subducted carbonates are expected to melt at T and P 

conditions occurring in the mantle transition zone producing carbonatites (Litasov et al., 

2013). Carbonatitic melts can probably rise up from the mantle transition zone, providing 

source of CO2, oxidize upper mantle, and provoking voluminous melting (Litasov et al., 

2013). 

Another possibility for deep sub-lithospheric melting is redox melting, which involve 

recycling of carbon, hydrogen or methane from the stagnant slab in the transition zone mantle 

and their oxidation due to reaction with ambient mantle in the sub-cratonic asthenosphere 

(Foley, 2011; Rohrbach and Schmidt, 2011). 

Such subduction model referred to as the deep water cycle (Ivanov and Litasov, 2014), 

was tested for the SFB (e.g. Ivanov, 2007; Ivanov et al., 2008; Ivanov and Litasov, 2014). The 

supporting observations are the following: 

(1) Peculiar location of the SFB province with respect to subducting systems (Nikishin et al., 

2002; Ivanov, 2007; Fig. 6); 

(2) Abundant water-bearing (mica and amphibole) minerals in mafic intrusions (Ivanov, 2007; 

Ivanov et al., 2008); 

(3) Subduction-like incompatible element patterns with depletion of Nb and Ta and 

enrichment of Sr and Pb relative neighboring elements in dominant low-Ti basalt rock series 

(Puffer, 2001; Ivanov et al., 2008) (Fig. 4). 
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 Another debatable, but on my view also supporting observation, is availability of 

carbonatitic complexes temporally associated with the SFB (Kogarko and Zartman, 2007). 

Ernst and Bell (2010) suggest that the association of carbonatites with flood basalts is 

evidence of a plume, when carbonatites are produced from a more volatile rich-area along the 

plume margins with melting of the main portion of the plume causing normal basalts. Ernst 

and Bell (2010) argues that carbonatites never associate with subduction environment. 

However, recent interpretations of carbonatites (and kimberlites) link this type of magmatism 

with slabs penetrating into the transition zone mantle (e.g., Duke et al., 2014) in agreement 

with experimental results on the deep origin of, at least, some types of carbonatites (Litasov et 

al., 2013). 

The deep water cycle model can be easily combined with the tectonic venting idea of 

Silver et al. (2006) to explain the extremely short duration of individual volcanic pulses 

within the SFB province (Konstantinov et al., 2014). Indeed, the shorter volcanic pulses the 

harder to reconcile them with thermal (plume) anomalies, because thermal processes are inert 

and cannot produce short-lived volcanism. In other words, the association of the SFB 

province with a lower mantle plume, superplume or similar is a tradition, but it is not required 

by evidence. 

The deep water cycle model was not tested for the Devonian YVFB province. So far, a 

plume model is considered as most promising by other authors (Kiselev et al., 2012). They 

noted radial distribution of dykes and rifts (Fig. 2) and assumed that they can be traced to the 

same plume centre located outside the Siberian Craton (Fig. 6). According to that idea, 

melting occurred at shallow depth outside (or in between) the cratonic area and then magma 

flowed via dyke conduits, reaching crustal levels.  

To test this idea, a counterpart of the YVFB province has to be found within other 

Devonian terranes adjacent to Siberia (Fig. 6). It should also explain significant difference in 
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chemistry between the low-Ti and high-Ti basalts (Fig. 3, 4), considering their isotopic 

similarity (Table 1).  

By the way, the model of radiating dykes from the same plume center do not require 

either hot or lower mantle plume. This model may work similarly with a wet transition zone 

generated diapir as suggested in the deep water cycle model.  

 

CONCLUSIONS 

 

 If volatile-poor, cratonic lithosphere is too cold and thick to allow melting within or 

under the lithosphere and thus it prevents generation of voluminous flood basalts. In order to 

explain cratonic flood basalts it is necessarily to assume that either (1) the magma emplaced 

outside the cratonic area or magma was produced in correspondence of lithospheric thickness 

reduction along ancient suture zones separating different cratonic portions and propagated 

laterally to the thick cratonic areas via long dykes, or (2) cratonic lithosphere was thinned via 

delamination and/or rifting, or (3) sub-lithospheric mantle was H2O-, CO2-, F-rich for 

lowering temperature of melting. In this paper I show that there was no pre-volcanic thinning 

of the lithosphere. There is no evidence on lithospheric reduction along ancient zones either. 

Among the two remaining explanations, I consider that the volatile fluxing at sub-lithospheric 

or lithospheric depths is more plausible explanation. The volatile-rich source could be formed 

by various processes, but the most probable is the wetting of the sub-cratonic mantle via fast 

subduction, transition zone slab stagnation, slab warming, slab degassing and generating wet 

diapirs not long before the flood basalt volcanism. This process is referred to as the deep 

water cycle.  
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Figure 1. Solidi of dry and wet mantle lithologies (Wallace and Green, 1988; Sato et al., 1997; 

Hirschmann, 2000; Kogiso et al., 2003; Litasov and Ohtani, 2003; Litasov et al., 2013) and 

carbonatites (Litasov et al., 2013). Solid lines are based on experimental data and hatched 

lines are extrapolations. Red line marks graphite-diamond equilibrium (Pal’yanov et al., 

2002). TBL – thermal boundary layer. Lithosphere is defined as the volume between the 

surface and the TBL. Mantle geotherm is from (Turcotte and Schubert, 2002). Cratonic 

geotherm is from typical PT values of cratonic xenoliths including those of the Siberian 

Craton and corresponds to surface heat flux of about 45 mW/m2 (Rudnick and Nyblade, 1999; 

Lee et al., 2011). Dashed thin lines and open circles within the grey field of the cratonic 

lithosphere mark predominant localization of deformed and coarse-granular peridotites, 

respectively (e.g., Rudnick and Nyblade, 1999; Solov’eva et al., 2008). The figure shows that 

fluxing by H2O and CO2 can produce mantle melting beneath thick cratonic lithosphere, 

whereas a high temperature plume (plus 300 oC over normal mantle geotherm) can produce 

melting of dry eclogite, but is not able to melt other types of dry mantle lithologies.  
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Figure 2. Distribution of Devonian YVFB and Permo-Triassic SFB provinces. The outlines 

are from Kiselev et al. (2012) and Ivanov et al. (2013), respectively. Devonian dykes are after 

Kiselev et al. (2012). Boundary of the Siberian craton is from Rosen et al. (1994) and Smelov 

and Timofeev (2007). Bold dashed curves are intercratonic sutures after Rosen et al. (1994). 

No – marks position of a dated lamproite dyke, which cuts the Noril’sk section of the Siberian 

flood basalts (Ivanov et al., 2013). Ny – marks position of Nyurba kimberlite with evidence of 

emplacement between the two Devonian flood basalt pulses (Kiselev et al., 2014). MK – 

marks position of the Malokuonapskaya diamondiferous Triassic kimberlite pipe (Khar’kiv et 

al., 1998; Sobolev et al., 2013). The Altai-Sayan volcanic and Transbaikalian provinces are 

shown after Vorontsov et al. (2013) and Yarmolyuk et al. (2001), respectively. Late Cenozoic 

volcanic fields, which probably are related to the Pacific stagnant slab are also shown (Ivanov 

et al., 2011). 
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Figure 3. SiO2-Na2O+K2O and MgO-TiO2 diagrams for the YVFB (Kiselev et al., 2012) and 

SFB (Zolotukhin and Al’Mukhamedov, 1991; Sobolev et al., 1992; Lightfoot et al., 1993; 

Wooden et al., 1993; Arndt et al., 1995; Hawkesworth et al., 1995; Fedorenko and 

Czamanske, 1997; Kogarko and Ryabchikov, 2000; Ryabchikov et al., 2001; Medvedev et al., 

2003; Reichow et al., 2005; Carlson et al., 2006; Ivanov et al., 2008; Panina and Usoltseva, 

2008; Sobolev et al., 2009; Black et al., 2012) provinces. Rock names and dividers in the 

SiO2-Na2O+K2O are after Le Bas and Streckeisen (1991); PB – picrobasalt, B – basalt, B-A – 

basaltic andesite, A – andesite, D – dacite, HW – hawaiite, MG – mugearite, BNM – 

benmoreite, TR – trachyte, BSN – basanite, PH-T – phonolitic tephrite, T- PH – tephritic 

phonolite, PH – phonolite. Position of the high magnesium rocks (P – picrite, M – 

meimechite, D – dunite, MN - melanonephelinite) is shown approximately, because the high 

magnesium rocks shall not be classified with this diagram.  
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Fig. 4. Primitive mantle (McDonough and Sun, 1995) normalized diagram for incompatible 

elements with selected basalt samples from the YVFB (open squares) and SFB (filled circles) 

provinces. Sample numbers and TiO2 concentrations are shown close to the corresponding 

spectra (see Table 1). Pb normalized concentrations are not shown for the sample 12b-00, 

because of suspicion for the analytical problem in Kiselev et al. (2012). Original data are after 

Wooden et al. (1993), Ivanov et al. (2008) and Kiselev et al. (2012).  
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Figure 5. Temporal relation between mafic and kimberlitic (and lamproitic) volcanism of the 

YVFB and SFB provinces. Data for the YVFB and SFB is represented by 40Ar/39Ar and U-Pb 

age compilations provided by Ivanov et al. (submitted) and Ivanov et al. (2013), respectively. 

Whereas data for kimberlites are SHRIMP U-Pb ages on perovskites from Kinny et al. (1997). 

One 40Ar/39Ar age for a lamproite is from Ivanov et al. (2013). All 40Ar/39Ar ages are 

recalculated according to calibration of Renne et al. (2010; 2011), which allows direct 

comparison between 40Ar/39Ar and U-Pb ages. To plot age probability histogram, errors for 

the 40Ar/39Ar ages were set to 1% unless the analytical error exceeds this value.  
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Figure 6. Paleogeographic reconstructions for 390 and 270 Ma (Domeier and Torvik, 2014), 

thus about 20 Ma before major phases of the YVFB and SFB volcanism, respectively. Other 

flood basalt and intracontinental volcanic provinces are Donbass (also named as Kola-Dneipr) 

(D, ~370 Ma), Kola (K, ~370 Ma), Altai-Sayan (AS, ~360 Ma), Emeishan (E, ~260 Ma), 

Transbaikalian (TB, ~260 Ma), and Fore-Caucasus (FC, ~230 Ma). Acronyms: Am – 

Amurian superterrane, Mg – Magnitogorsk arc, Mo – Mongolia-Okhotsk Ocean, Tu – 

Turkestan Ocean, SA – Slide Mountain – Angayucham Ocean, PA – Paleo-Asian Ocean. 

Names in white and black are for the volcanic provinces and plates, respectively. Postulated 

plume centers for the YVFB and SFB provinces are after (Kiselev et al., 2012) and Sobolev et 

al. (2011), respectively. According to Donskaya et al. (2013) subduction of the Mongolia-

Okhotsk oceanic slab could start in the Middle Devonian, however Domeier and Torvik 

(2014) consider that subduction of this slab started later in the Early Carboniferous.  



 44 

 

Figure 7. The deep water cycle model of origin of continental flood basalts with some 

simplifications after (Ivanov and Litasov, 2014). Numbered stages in (A) and (B) are the 

same. Acronyms in (B) are the following: Tlc – talc, Chl – chlorite, Am – amphibole, Atg – 

antigorite, 10A – 10 angstrom phase, phA – phase A, phE – phase E, Wd – wadsleyite, Rw – 

ringwoodite, Cpx – clinopyroxene. The stability field of ice VII is superimposed. Solid curves 

marked A, B, C, and D are for the coldest PT paths of the A, B, C, D type slabs of Kirby et al. 

(1996) calculated by Bina and Navrotsky (2000). M is for a ‘normal’ mantle geotherm 

(Turcotte and Schubert, 2002). Dashed curves marked ‘wet’ and ‘dry’ are 2 wt.% H2O and 

dry peridotite solidi after (Hirschmann, 2000) and (Litasov and Ohtani, 2003), respectively. 

Intensity of blue is decreasing in decreasing order of water content. References for mineral 

stability fields see (Ivanov and Litasov, 2014). 
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Table 1. Selected basalt compositions from the YVFB and SFB provinces. 
 
Province YVFB SFB 
Series High-Ti Low-Ti High-Ti Low-Ti Low-Ti 
Sample no. 12b-00 262-2k SG-32-2624.6 SG-32-87 887 
Reference [1] [1] [2] [2] [3] 
SiO2 46.7 48.25 47.20 49.31 47.60 
TiO2 4.88 1.76 3.66 1.58 0.74 
Al2O3 11.7 14.61 14.92 15.30 14.25 
Fe2O3 - 6.32 - - 2.52 
FeO - 7.12 - - 7.72 
FeOt 16.11 - 13.50 12.55 - 
MnO 0.16 0.20 0.24 0.19 0.16 
MgO 5.66 6.51 4.03 6.77 10.38 
CaO 7.71 11.74 9.45 11.27 12.76 
Na2O 2.15 2.41 3.41 2.32 1.76 
K2O 1.54 0.38 2.33 0.51 0.28 
P2O5 0.7 0.13 1.26 0.21 0.14 
LOI 1.02 1.21 4.86 2.89 1.34 
Total 98.33 100.64 104.86 102.90 99.65 
Rb 36.1 9.28 51.0 9.0 5.90 
Sr 232 207 386 190 168 
Y 62.7 27.6 59.0 38.0 15.2 
Zr 460 116 386 132 45.4 
Nb 44.0 6.98 44.0 8.0 2.00 
Ba 253 246 1164 163 71.2 
La 62.7 6.94 50.7 10.34 3.64 
Ce 135 17.6 109 25.2 8.95 
Pr 15.8 3.07 n.d. n.d. 1.16 
Nd 63.6 14.5 52.6 15.4 6.17 
Sm 14.0 4.24 10.4 4.21 1.51 
Eu 3.74 1.69 2.95 1.37 0.69 
Gd 14.1 5.35 9.51 5.25 2.25 
Tb 2.18 0.93 1.49 0.88 0.41 
Dy 12.6 6.24 n.d. n.d. 2.45 
Ho 2.50 1.35 1.99 1.24 0.50 
Er 6.23 3.91 n.d. n.d. 1.52 
Tm 0.92 0.54 0.75 0.52 0.23 
Yb 5.33 3.52 4.48 3.25 1.2 
Lu 0.74 0.47 0.65 0.48 0.20 
Hf 11.3 2.95 7.1 3.14 1.37 
Ta 2.35 0.50 2.25 0.38 0.13 
Pb 0.53 2.06 7.88 2.53 1.6 
Th 5.05 0.81 5.79 1.58 0.56 
U 1.56 0.30 2.32 0.82 0.24 
87Sr/86SrT 0.70452 0.70504 0.70575 0.70472 0.70587 
εNdT

 4.8 6.0 -0.2 1.9 n.d. 
Refrences: [1] Kiselev et al., 2012; [2] Wooden et al., 1993; [3] Ivanov et al., 2008. 
 


