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1. Introduction

The ‘standard’ plume model has been rejected by some authors (see www.mantleplumes.org) in favor

Table 1. Flood basalt provinces, related hotspots, and antipodal hotspots

Figure 3. Hotspot age ranges (x 10 Myr)
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The number of primary hotspot pairs (Np) within limit values of exact antipodality (L,,,,) of 2.0° to 10.0° ranges from 2
to 11 and are listed 1n Table 3. Either 1000 or 10000 random distributions of 45 hotspots were generated to test each null
hypothesis, and for each L,,,, the fraction (p) of artificial distributions with at least as many antipodal pairs as the primary
etermined. Assuming that the primary hotspots are randomly distributed over the entire Earth’s
y generated distributions out of 1000 have 11 (NVp) or more antipodal hotspot pairs (p(L,,,,)=0.003)
he randomly distributed null hypothesis, therefore, can be rejected at the >99% confidence level.

The actual age estimates for the primary hotspots (Fig. 3) were also randomly associated with the artificially generated
hotspots. The assigned 10 Myr error ranges were more than enoug
Table 1 to overlap. For most L,,,, values the age-modified null hypotl
level (Table 3). Finally, stmilar null hypotheses were tested in which t]

L

Table 3. Primary hotspots vs. random distributions

Limit (°) Primary P(Lax) P(Limax) P(Lmax) P(Lmax)
(Lyax)  pairs (Np) ages >20° |at. >20° lat.; ages
2.0 2 0.031 0.0141 0.068 0.033
3.0 4 0.002 0.0005 0.013 0.004
e 4.0 5 0.004 0.0006 0.008 0.002
5.0 6 0.003 0.0004 0.021 0.001
6.0 7 0.004 <0.0001 0.023 0.002
7.0 7 0.018 0.0011 0.082 0.008
8.0 9 0.006 <0.0001 0.038 0.002
9.0 10 0.004 0.0002 0.061 0.006
10.0 11 0.003 0.0003 0.030 0.005

included, mostly at >99% confidence level (p<0.01; Table 3).
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5. Mechanism of antipodal hotspot formation

h to allow the age estimates of all antipodal pairs 1n
hesis can be rejected at >99.9% (p<0.001) confidence
he artificial hotspot locations were limited to spherical
caps (>20° latitude) totaling two-thirds of the Earth’s surface area or the area of the oceanic basins. In this case, the null
7 hypothesis without ages can be rejected for most L,,, values at >95% (p<0.05) confidence level, and, that with the ages

Figure 7. Known impact structures

Antipodal Hotspots and Bipolar Catastrophes: Were Oceanic Large-Body Impacts to Blame?
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Figure 8. K/T boundary at Braggs, Alabama
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An 1nherently antipodal model of hotspot and LIP formation (Fig. 6) 1s proposed in which minor hotspot volcanism 1s generated at a large-body
impact sites and flood-basalt volcanism 1s triggered antipodally by focused seismic energy [Boslough et al., GSA Spec. Pap. 307 1996]. Shock-
hydrodynamic simulations used to generate source functions for seismological modeling of the Earth (10-km-diameter asteroid impacting at 20 km/s),
show the largest displacements (=10 m at antipode), stresses, and strains in the antipodal lithosphere and upper asthenosphere. Accepting that the upper
mantle 1s likely hotter and more fertile than generally presumed 1n ‘standard’ mantle plume models (www.mantleplumes.org), lithospheric fracturing by
focused seismic energy from large-body impacts might have played a major role in the formation of antipodal flood basalts. Shock wave attenuation 1s

expected to be higher in the tectosilicates found primarily in continental and not oceanic crust. Large oceanic impacts are thus inferred to have been
mostly responsible for the formation of antipodal hotspot pairs (Fig. 7; Table 4). Oceanic large-body impacts (10-km-diameter asteroid) also differ from
continental impacts 1n that the bulk of their ejecta 1s high-velocity water vapor containing only small amounts of crustal material [Roddy et al., Int. J.
Impact Eng. 1987], and that they generate megatsunami capable of widespread catastrophic effects [4hrens & O ’Keefe, JGR 1983].

6. Implications of antipodal hotspot model

Global mass extinctions have also been associated with continental LIP events, as well as to large-
body impacts, rapid regressive and transgressive changes in sea level, and abrupt changes in ocean
chemistry. Megatsunami in the ‘oceanic’ hemisphere and vast quantities of noxious gases (CO,, SO,,

HCIl) from flood basalt eruptions in the ‘continental’ hemisphere might have been responsible for the
profound environmental changes at ~68-67 Ma triggering the Cretaceous/Tertiary (K/T) transition. A
large drop then rise 1n eustatic sea level (Fig. 8), a distinct positive spike in the 87Sr/86Sr ratio of sea

water, and extinctions of the rudistid clam reefs, inoceramid bivalves, belemnites, and shallow-water
ammonite species all occurred. Climate change is also indicated by fossil plant communities in the

Aquilapollenites Province of western North America and Eastern Siberia.

The Permian/Triassic (P/T) transition comprised two distinct events separated in time by ~5 Myr (Fig.
9). The first extinction pulse occurred along with eruption of the Emeishan LIP of southern China (Fig.
2) as sea level apparently regressive underwent and transgressive changes. During the subsequent end-
Permian event, the Siberian Traps were erupted and sea level apparently dropped, then returned, by
perhaps the largest amount in Phanerozoic time. Thus, two large oceanic impacts close together in space
and time might have triggered the end-Permian LIPs, and caused the apparent changes in sea level and

shifts in ocean chemistry.

Figure 9. Apparent P/T sea
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Table 4. Largest well-dated impact craters (>10 km; <100 Mal?®!) and nearest antipodal hotspot
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ANTIPODE

Impact Location Age Diam. African coord.?8l Antipodal Location Age  Afr. coord.?®l  Dist. Drift
structure Lat.(°) Lon.(°®) (Ma) (km) Lat.(°) Lon.(°) hotspot Lat.(°) Lon.(°) (Ma) Lat.(°) Lon.(°) (°)  (mmur
Chicxulub (Mexico) 21N 270E ~65 170 18N 290 E Christmas |. 11S 106 E >40[27 5S 112E 167 ~22
Ewing (Pacific Ocean) 14N 222E >7-1104 <150 11N 229 E Comores 12S 43E >8" 11S 44E 175 ~69
Popigai (Russia) 72N 111E ~36 100 76N 127E  MerrickMins. 75S 288E 7?61 78S 298E 177 ~9
Montagnais (Canada) 43N 296 E ~51 45 41N 311 E E. Australia 38S 143 E >5081 39S 142E 171 ~20
Kamensk (Russia) 48N 41E ~49 25 53N 40E Louisville 51S 219E >708% 54S 219E 179 ~2
Haughton (Canada) 75N 270E ~23 24 73N 277E Gaussberg 68S B89E ~2061 65S 87E 171 ~43
Boltysh (Ukraine) 49N 32E ~65 24 56N 29E Louisville 51S 219E >70B% 54S 232E 167 ~22

Age references (see Table 2); see also Figure 7.



