

89. Mori, T., and **D. H. Green** (1975), Pyroxenes in the system \(\text{Mg}_2\text{Si}_2\text{O}_6 - \text{CaMgSi}_2\text{O}_6 \) at high pressure, *Earth Planet. Sci. Lett.*, 26, 277-286.

100. Mori, T., and D. H. Green (1976), Subsolidus equilibria between pyroxenes in the CaO-MgO-SiO$_2$ system at high pressures and temperatures, Am. Miner., 61, 616-625.

look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM

Historical Records of Australian Science, edited, pp. 247-266, Australian
Academy of Science, Canberra.

London.

its current expression, in The Earth's Mantle: Composition, Structure and
Evolution, Ed: I.N.S.Jackson, pp. 311-380, Cambridge University Press,
Cambridge.

182. Kamenetsky, V. S., S. M. Eggins, A. J. Crawford, D. H. Green, M.
Gasparon, and T. J. Falloon (1998), Calcic melt inclusions in primitive olivine at
32°N MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich

183. Kogarko, L. N., and D. H. Green (1998), Phase equilibria during the melting
of melilite nephelinite under pressures of up to 60 kbar, Doklady Earth Sciences,
359A, 404-405.

184. Yaxley, G. M., and D. H. Green (1998), Reactions between eclogite and
Petrogr. Mitt., 78, 243-255.

185. Yaxley, G. M., D. H. Green, and V. Kamenetsky (1998), Carbonatite
metasomatism in the southeastern Australian lithosphere, J. Petrol., 39, 1917-
1930.

186. Falloon, T. J., D. H. Green, L. V. Danyushevsky, and U. H. Faul (1999),
Peridotite Melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques
using diamond aggregates and mineral mixes for determination of near-solidus
melts, J. Petrol., 40, 1343-1375.

Refractory magmas in back-arc basin settings — Experimental constraints on the
petrogenesis of a Lau Basin example, J. Petrol., 40, 255-277.

188. Niida, K., and D. H. Green (1999), Stability and chemical composition of
pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib.
189. Conceição, R. V., and D. H. Green (2000), Behavior of the cotectic curve En-Ol in the system leucite-olivine-quartz under dry conditions to 2.8 GPa, *Geochemistry Geophysics Geosystems, 1*, paper no. 2000GL000071

by amphibole-dominated fractional crystallization within the lithospheric mantle. *J. Petrol.* 49, 741-756.

