Chlorine-rich metasomatic H₂O–CO₂ fluids in amphibole-bearing peridotites from Injibara (Lake Tana region, Ethiopian plateau): Nature and evolution of volatiles in the mantle of a region of continental flood basalts

Maria Luce Frezzotti a,*, Simona Ferrando b, Angelo Peccerillo c, Maurizio Petrelli c, Francesca Tecce d, Andrea Perucchi e

a Department of Earth Sciences, University of Siena, Via Laterina 8, 53100 Siena, Italy
b Department of Mineralogical and Petrological Sciences, University of Torino, Via V. Caluso 35, 10125 Torino, Italy
c Department of Earth Sciences, University of Perugia, P.za Universita` 1, 06100 Perugia, Italy
d IGAG – CNR, c/o Department of Earth Sciences, University Roma 1 – La Sapienza, P.za A. Moro 5, 00185 Roma, Italy
e Sincrotrone ELETTRA, Trieste, 34012 Basovizza (Trieste), Italy

Received 21 September 2009; accepted in revised form 1 February 2010; available online 13 February 2010

Abstract

Petrological and geochemical study of volatile bearing phases (fluid inclusions, amphibole, and nominally anhydrous minerals) in a spinel lherzolite xenolith suite from Quaternary lavas at Injibara (Lake Tana region, Ethiopian plateau) shows compelling evidence for metasomatism in the lithospheric mantle in a region of mantle upwelling and continental flood basalts. The xenolith suite consists of deformed (i.e., protogranular to porphyroclastic texture) Cl-rich pargasite lherzolites, metasomatized (LILE and Pb enrichment in clinopyroxene and amphibole) at T ≤ 1000 °C. Lherzolites contain chlorine-rich H₂O–CO₂ fluid inclusions, but no melt inclusions. Fluid inclusions are preserved only in orthopyroxene, while in olivine, they underwent extensive interaction with host mineral. The metasomatic fluid composition is estimated: X CO₂ = 0.64, X H₂O = 0.33, X Na = 0.006, X Mg = 0.006, X Cl = 0.018, (salinity = 14–10 NaCl eq. wt.%, aH₂O = 0.2, Cl = 4–5 mol.%). Fluid isochores correspond to trapping pressures of 1.4–1.5 GPa or 50–54 km depth (at T = 950 °C). Synchrotron sourced micro-infrared mapping (ELECTRA, Trieste) shows gradients for H₂O-distribution in nominally anhydrous minerals, with considerable enrichment at grain boundaries, along intragranular microfractures, and around fluid inclusions. Total water amounts in lherzolites are variable from about 150 up to 400 ppm. Calculated trace-element pattern of metasomatic fluid phases, combined with distribution and amount of H₂O in nominally anhydrous minerals, delineate a metasomatic Cl- and LILE-rich fluid phase heterogeneously distributed in the continental lithosphere. Present data suggest that Cl-rich aqueous fluids were important metasomatic agents beneath the Ethiopian plateau, locally forming high water content in the peridotite, which may be easily melted. High Cl, LILE, and Pb in metasomatic fluid phases suggests the contribution of recycled altered oceanic lithosphere component in their source.

© 2010 Elsevier Ltd. All rights reserved.

* Corresponding author. Tel.: +39 0577 233929.
E-mail address: frezzottiml@unisi.it (M.L. Frezzotti).
1. INTRODUCTION

C–O–H–S and halogens present in the Earth’s upper mantle in different physical states (i.e., free fluid phases, dissolved in melts, in interstitial solid solutions, as well as stored in nominally anhydrous minerals) play a fundamental role in mantle properties and processes, including rheology, metasomatism, and melting (e.g., Wallace and Green, 1988; Thompson, 1992; Green and Falloon, 1998; Wyllie and Ryabchikov, 2000; Dasgupta and Hirschmann, 2006).

Fluid inclusions in xenolith suites provide an important opportunity to characterize free fluid phases at depths (cf., Andersen and Neumann, 2001 for a review). Since E. Roedder’s initial studies (1965), it has been evident that CO2 dominates in the lithospheric mantle (<2–3 GPa). Overwhelming CO2, however, is not the sole component in the mantle fluid inclusions. H2O-bearing CO2 inclusions have been reported in peridotites from subduction-zones (e.g., Schiano et al., 1995), and, more recently, from Canary and Hawaii intraplate oceanic settings (Ferruzzi et al., 2002a,b; Frezzotti and Peccerillo, 2007), revealing a major role for aqueous fluid phases also in zones of intraplate mantle upwelling. At Tenerife (Canary Islands), Frezzotti et al. (2002a) suggested a chlorine-rich composition for aqueous fluids, based on the presence of reaction rims of talc + carbonate + halite lining fluid inclusions. However, quantification of the halogen (e.g., chlorine) content of aqueous fluid phases at lithospheric depths by fluid inclusion study is missing. Yet, such an information would be of particular interest to trace the H2O exchanges between Earth’s reservoirs, since chlorine is water-soluble and behaves incompatibly. In contrast, at higher pressures, above 4–5 GPa, a high Cl activity in aqueous fluids is testified by hydro-saline fluids (Cl about 12–50 mol.%) in sub-micrometer sized inclusions in diamonds (Navon et al., 1988; Izraeli et al., 2001; Klein-BenDavid et al., 2004, 2007).

The present study aims to provide a better understanding of the role of volatiles in the lithosphere of a region of the continental mantle upwelling and the formation of large igneous provinces (LIP’s). LIP’s are traditionally interpreted as melting products of plume heads (White and McKenzie, 1995; Condie, 2001; Ernst and Buchan, 2003), although the relative lithospheric–plume contribution to the extensive magmatism is debated (cf., Pik et al., 1998; Kempton et al., 2000; Furman et al., 2006), and alternative models for LIP generation have been proposed (e.g., Anderson, 2005; Foulger et al., 2005). The approach taken is a detailed study of H2O-bearing phases (fluid inclusions, amphibole, and nominally anhydrous minerals) in a suite of amphibole-bearing spinel lherzolites occurring at the Afirbara volcano, south-west of the Tana Lake (a summary of the petrography, and major element mineral chemistry has been presented by Ferrando et al., 2008). This volcanic center is located on the Ethiopian plateau, at a marginal position with respect to the Afar and the Main Ethiopian Rift, i.e., foci of continental breakup.

We will bring the first direct evidence of chlorine-rich H2O-CO2 metasomatic fluids preserved as inclusions in mantle minerals in the subcontinental lithosphere in a region of swelling and flood basalt formation. The Cl-rich, C–O–H composition of the metasomatic fluid phase, combined with the calculated trace-element patterns and H2O-distribution in nominally anhydrous minerals, allows us to trace fluid–rock interaction involved in lithospheric enrichment processes, and to discuss fluid phase origin.

2. GEOLOGICAL FRAMEWORK

Ethiopia and Yemen have been affected by Oligocene to present flood basalt volcanism, prior to and concomitantly with the formation of the Ethiopian Rift Valley and the Afar depression (e.g., Mohr and Zanettin, 1988; Schilling and Kingsley, 1992; Deniel et al., 1994; Hofmann et al., 1997). The abundant basaltic volcanism, forming a wide continental flood basin province, was accompanied by extensive regional uplift, and followed by rift opening and continental breakup (e.g., Mohr and Zanettin, 1988). It built up a thick succession of tholeiitic to Na-alkaline lavas and pyroclastic rocks, covering an area of about 600 km2 (Fig. 1). Both the strong regional uplift preceding or accompanying the magmatic activity, and the spatial distribution of magma types have been interpreted by most Authors as evidence of emplacement of deep mantle plumes into the lithosphere, generating continental breakup and extensive magmatic activity (e.g., Schilling, 1973; Hofmann et al., 1997; Pik et al., 1998, 1999; Ebinger and Casey, 2001; Kieffer et al., 2004).

Various stages of volcanic activity are recognized. The basaltic plateau was formed during the early stages, between about 50 and 10 Ma (e.g., Merla et al., 1979; Mohr and Zanettin, 1988), with the eruption of flood tholeiitic to transitional basalts; these were accompanied by the eruption of mildly alkaline trachytic and rhyolitic ignimbritic sheets, especially at the top of the basaltic sequence. The bulk of basaltic magmas was erupted in a rather short time interval, around 30 ± 1 m.y. (Zumbo et al., 1995; Baker et al., 1996; Hofmann et al., 1997; Uktins et al., 2002). Successively, several shield volcanoes of transitional to Na-alkaline basalts and minor trachytes were constructed (e.g., Piccirillo et al., 1979). Finally, Pliocene to Present volcanic activity took place mostly along the Main Ethiopian Rift and the Afar. Large variations in the petrological, geochemical, and volcanological characteristics of the volcanism have been observed both in space and time in the Ethiopian-Afar-Red Sea volcanism (e.g., Chazot and Bertrand, 1993; Deniel et al., 1994; Marty et al., 1996; Pik et al., 1998, 1999; Ayalew et al., 2002). These have been interpreted as related either to heterogeneities within an ascending deep mantle plume (Pik et al., 1999) and/or to interaction between deep plume material and the lithospheric mantle (Deniel et al., 1994) with an important role of crustal contribution (Pik et al., 1999; Ayalew et al., 2002).

Most petrological data on the subcontinental lithospheric Ethiopian mantle were obtained through the study...
of xenolith suites in Miocene-Quaternary alkali basalts from three different sections (Fig. 1): the Northern Ethiopian Plateau (Lake Tana region: Conticelli et al., 1999; Roger et al., 1999; Ferrando et al., 2008; Simien shield volcano: Ayalew et al., 2009), the Southern Main Ethiopian Rift (Mega; Bedini et al., 1997; Conticelli et al., 1999), and the Central Main Ethiopian Rift (Rooney et al., 2005). Beneath the Ethiopian plateau, Conticelli et al. (1999) and Roger et al. (1999) described a heterogeneous lithosphere, consisting of spinel lherzolites with very subordinate harzburgites, dunites, and olivine websterites, which may locally contain amphibole. Recently, in Quaternary basanitic lavas from a cinder cone located 7–8 km SW of Injibara (Lake Tana region; Fig. 1), Ferrando et al. (2008) reported two suites of spinel lherzolites: progranular to porphyroclastic Cl-pargasite-bearing spinel lherzolites ($T < 1000{^\circ}C$), which are also the subject of the present study; and granular spinel lherzolites (±amphibole), which underwent thermal recrystallization ($1043–1167{^\circ}C$). Geochemical studies allowed to propose that the lithosphere beneath the Ethiopian plateau underwent two successive metasomatic events: modal metasomatism induced by a hydrous metasomatic agent, followed by cryptic metasomatism by alkali basaltic melts at higher temperatures.

3. ANALYTICAL TECHNIQUES

Major element analyses of minerals were carried out using a CAMECA SX50 electron microprobe at the IGAG, CNR in Roma. Operating conditions were 15 kV accelerating voltage, 15 nA beam current, and 10 s counting time for element. Natural and synthetic standards include: orthoclase (K), wollastonite (Ca, Si), native manganese (Mn), corundum (Al), jadeite (Na), magnetite (Fe), native nickel (Ni), potassium chloride (Cl), periclase (Mg), native chromium (Cr), and rutile (Ti). At the operating conditions, values below 0.05 wt.% for minor elements must be considered only indicative of very low contents (i.e., <0.05 wt.%). Structural formulae of minerals were processed using the software of Ulmer (1986). For amphiboles, the nomenclature of Leake et al. (2004) was followed.

In situ trace-element analysis of clinopyroxene and amphibole was performed on polished petrographic thin sections (100 μm thick) using the Laser Ablation–Inductively Coupled Plasma–Mass Spectrometer (LA–ICP–MS) installed at the University in Perugia (SMAArt facilities). The instrumentation consists of a New Wave UP213 frequency quintupled Nd:YAG laser ablation system coupled with a Thermo Electron X7 quadrupole based ICP–MS. All LA–ICP–MS measurements were carried out using time
resolved analysis operating in a peak jumping mode. Each analysis consisted of ca. 40 s of measurement of instrumental background, i.e., analysis of the carrier gas with no laser ablation, followed by ca. 60–80 s of data acquisition with the laser on. The laser beam diameter, the repetition rate and the laser energy density were fixed to 30–40 μm, 10 Hz and ~10 J/cm², respectively. Helium was preferred over argon as a carrier gas to enhance the transport efficiency of ablated aerosol (Eggin et al., 1998). The helium carrier exiting the ablation cell was mixed with argon make-up gas before entering the ICP torch to maintain stable and optimum excitation condition. External calibration was performed using NIST SRM 610 and 612 glass standards in conjunction with internal standardization using 42Ca, previously determined by electron microprobe WDS analysis. The laser (514.5 nm argon-ion laser at Siena University, calibrated using synthetic fluid inclusion temperature standards. In the temperature analysis Suite Issue 12, INCA Suite version 4.01; the raw data were calibrated on natural mineral standards and the 𝛽 cor Z correction (Pouchou and Pichoir, 1988) was applied.

Microthermometric measurements in fluid inclusions were done in eight samples with a Linkam THM 600 at the Siena University, calibrated using synthetic fluid inclusion (SYNFLINC) temperature standards. In the temperature interval between ~90 and 40 °C, the accuracy was estimated at 0.1 °C at the standard reference points, and 0.2 °C at other temperatures. Isochores for inclusions are calculated using the ISOC computer program (Bakker, 2003).

Raman spectra were acquired with a Labram microprobe (HORIBA, Jobin-Yvon), equipped with a polarized 514.5 nm argon-ion laser at Siena University. The laser power was 300–500 mW at the source and about 80% less at the sample surface. The slit width was 100 μm and the corresponding spectral resolution was ±1.5 cm⁻¹. Raman spectra were collected through a 100× Olympus objective (excitation spot 1–2 μm in size) for an acquisition time of 30 or 60 s. Wavenumbers of the Raman lines were calibrated daily by the position of the diamond band at 1332 cm⁻¹. The assignment of the Raman peaks was done by comparison with the reference database of mineral Raman spectra at the University of Siena (http://www.dst.unisi.it/geofluids/raman/spectrum_frame.htm), if not otherwise indicated. The analytical procedures applied for water detection in fluid inclusions are described in Frezzotti and Peccerillo (2007).

Fourier transform infrared (FTIR) microspectroscopy was performed at the infrared beam-line SISSI (Source for Imaging and Spectroscopic Studies in the Infrared) operating at the synchrotron laboratory ELETTRA in Trieste. Spectra were collected on a FTIR spectrometer (Bruker IFS66/v) fitted with a Hyperion IR microscopy with a liquid-nitrogen-cooled HgCdTe (MCT) detector. Infrared microscopy was performed on an infrared microscopy system (Bruker) with a 16× magnification infrared objective. Spectra were collected at a resolution of 4 cm⁻¹ and signal averaged for 128 scans on each data collection. Background spectra were recorded in air. For IR imaging studies, we used double-polished thick sections of xenoliths of known thickness. The spectral images were collected by scanning areas of variable sizes (200–400 μm-long and 200–400 μm-wide), following a regular grid of square-aperture dimension of 20 μm equidistant by 20 μm in both directions (i.e., totals of 100–400 spectra), using a computer-controlled automated X–Y mapping stage.

Interpretation of unpolarized spectra of H₂O followed the classical group frequency approach in which absorption bands are assigned to specific vibrational modes. OH concentrations in mineral phases were estimated from the integrated absorbance using the Beer–Lambert law (Paterson, 1982). Experimentally determined calibration constants for clinopyroxene and orthopyroxene are from Bell et al. (1995), and those for olivine are from Bell et al. (2003). Since unpolarized FTIR H₂O measurements are affected by large errors (30–50%; cf., Demouchy et al., 2006), and imaging revealed H variations with position within single minerals, measuring the H₂O amounts with precision at the ppm scale was complicated; thus, the measured water contents are reported in intervals of tens of ppm, emphasizing the relative variations with distribution within single grains.

4. COMPOSITION OF PERIDOTITES

Deformed spinel lherzolites have protogranular to porphyroclastic textures (Fig. 2a) and contain two generations of olivine and orthopyroxene: large deformed porphyroclasts (2–4 mm), and polygonal neoblasts (up to 1 mm). Exsolution lamellae of clinopyroxene are usually present within porphyroclastic orthopyroxene (Fig. 2b). Clinopyroxene consists of smaller interstitial and tabular grains (<1 mm), containing spinel exsolution lamellae (Fig. 2c). Brownish spinel has porphyroclastic or “holly-leaf” shape. Most deformed xenoliths contain weakly pleochroic amphibole (0.5–1 mm). Amphibole usually occurs in contact with clinopyroxene, and always contain relics of spinel, suggesting its growth from it (Fig. 2d).

Lherzolites have variable modal compositions with 50–69 olivine, 19–31 orthopyroxene, 9–20 clinopyroxene, 2–7 spinel, and amphibole ≤1, in vol.%. Comprehensive major element compositions of minerals have been reported in Ferrando et al. (2008). Olivine has Mg-numbers (mg# = Mg/(Mg + Fe₄⁺) × 100) from 89.2 to 89.6, lower than the average cratonic mantle (Pearson et al., 2003). Spinel has mg# from 72.9 to 75.1, and cr# (cr# = Cr/Cr + Al × 100) from 15 to 19 (Table 1). Both porphyroclasts and neoblasts of orthopyroxene are enstatite, with mg# = 89.9–90.3.
Clinopyroxene is a Ti-poor, Cr–Na-rich diopside (mg# = 89.8–91; Table 1). Clinopyroxene was analyzed for trace elements, illustrated in Fig. 3a and reported in Table 2. It shows LREE enrichment relative to HREE [La 10–15 PM; (La/Yb)N = 4–2.5] and flat REE patterns. HREE are relatively high, excluding re-equilibration with garnet, which would lead to much lower HREE contents. Remarkable features are the positive anomalies in LILE, particularly Th, U, and Pb, and the LILE/HFSE fractionation (PbN/NbN = 10–50). Ti, Zr, and Hf show modest negative anomalies with respect to REE; Nb and Ta contents are lower than those of the primordial mantle.

Amphibole is a Cr-rich pargasite, with mg# = 87.5–88.2 (Table 1). Although mantle amphibole is generally Cr-poor (typically <0.05 wt.%; e.g., Vannucci et al., 1995), pargasite has a high Cr-content (0.33–0.37 wt.%; Table 2). Pargasite has LREE [La 10–15 PM; (La/Yb)N ≈ 4]; Pb, U, Th, and Sr enrichments quite similar to clinopyroxene (cf., Fig. 3 and Table 2), while it tends to concentrate Ba (Fig. 3b). Although amphibole is the main host for Nb and Ta (e.g., Ionov and Hofmann, 1995), our pargasite does not show significant enrichments in these elements.

5. COMPOSITION AND DENSITY OF FLUID INCLUSIONS

Fluid inclusions are present in olivine and orthopyroxene porphyroclasts (Table 3; Fig. 4). Clinopyroxene generally does not contain fluid inclusions, with exception of a few grains (Fig. 4). Inclusions seem to have formed during a single fluid–rock interaction event; their distribution as small clusters and along trails, which never reach grain boundary edges, is indicative for early trapping (cf., Touret, 2001). Absence of inclusions in (olivine and orthopyroxene) neoblasts, in pargasite, and in most clinopyroxene grains, indicates formation just prior to or contemporaneously with the recrystallization of peridotites. Glass (i.e., melt) has never been observed within fluid inclusions, and melt inclusions and/or glass on grain boundaries are absent in peridotites.

In orthopyroxene porphyroclasts, fluid inclusions consist of CO2 + H2O, or CO2 (CO2 80 vol.%; Fig. 4a and b). Liquid H2O has been observed confined to the cavity borders only in a few large irregularly-shaped inclusions (Table 3). Water within inclusions was further identified by Raman analysis (Fig. 5a), and by microthermometric measurements (i.e., melting of clathrates, cf. Table 3). In olivine porphyroclasts only a few among the inclusions contain CO2 ± H2O, while most inclusions appear to have reacted with the host olivine, and are filled by aggregates of phyllosilicates and a carbonate, without any noticeable fluid (step-daughter phases of Svensen et al., 1999; Table 3; Fig. 4c and d). Raman analyses identify the association of talc, or clinochlore + magnesite (Fig. 5b–d). In clinopyroxene, rare fluid inclusions contain CO2, but no H2O or solids, and form short alignments along with abundant tiny amphibole inclusions (20–80 µm; arrows in Fig. 4e). Chemical analyses indicate these last ones as Cl-rich pargasite, identical to the pargasite.
Table 1
Representative chemical analyses of olivine, orthopyroxene, clinopyroxene, amphibole, and spinel.

<table>
<thead>
<tr>
<th>Sample</th>
<th>INJ16</th>
<th>INJ16</th>
<th>INJ16</th>
<th>INJ16</th>
<th>INJ16</th>
<th>INJ16</th>
<th>INJ37</th>
<th>INJ4</th>
<th>INJ7</th>
<th>INJ16</th>
<th>INJ16</th>
<th>INJ35</th>
<th>INJ35</th>
<th>INJ4</th>
<th>INJ7</th>
<th>INJ16</th>
<th>INJ16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Analyses</td>
<td>Ol I</td>
<td>Ol II</td>
<td>Opx I av</td>
<td>Opx II av</td>
<td>Spl</td>
<td>Spl</td>
<td>Cpx core</td>
<td>Cpx core</td>
<td>Cpx rim</td>
<td>Cpx rim</td>
<td>Cpx core</td>
<td>Cpx core</td>
<td>Cpx core</td>
<td>Pargasite</td>
<td>Pargasite</td>
<td>Amp FI</td>
<td>Amp FI</td>
</tr>
<tr>
<td>Analyses</td>
<td>14ol39</td>
<td>inj16opxC</td>
<td>inj16opxB</td>
<td>9spl8</td>
<td>72spl49</td>
<td>i4cpx49</td>
<td>i7cpx20</td>
<td>i16cpx15</td>
<td>i16cpx17</td>
<td>i35cpx12r</td>
<td>i35cpx64</td>
<td>i4amp24</td>
<td>i7amp22</td>
<td>Amp FI</td>
<td>1amp136</td>
<td>Amp FI</td>
<td>1amp139</td>
</tr>
<tr>
<td>SiO₂ (wt. %)</td>
<td>40.94</td>
<td>40.91</td>
<td>55.67</td>
<td>55.8</td>
<td>0.07</td>
<td>0.04</td>
<td>52.6</td>
<td>52.76</td>
<td>52.51</td>
<td>52.21</td>
<td>52.41</td>
<td>52.62</td>
<td>42.81</td>
<td>42.97</td>
<td>42.7</td>
<td>42.1</td>
<td>41.97</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.01</td>
<td><0.01</td>
<td>0.11</td>
<td>0.2</td>
<td>0.14</td>
<td>0.47</td>
<td>0.56</td>
<td>0.53</td>
<td>0.58</td>
<td>0.45</td>
<td>0.54</td>
<td>2.54</td>
<td>2.46</td>
<td>2.45</td>
<td>2.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.02</td>
<td>0.01</td>
<td>0.41</td>
<td>0.36</td>
<td>16.78</td>
<td>14.35</td>
<td>1.02</td>
<td>0.81</td>
<td>0.92</td>
<td>0.93</td>
<td>0.99</td>
<td>0.85</td>
<td>1.27</td>
<td>1.53</td>
<td>1.55</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.03</td>
<td>0.01</td>
<td>3.51</td>
<td>3.65</td>
<td>51.17</td>
<td>52.69</td>
<td>5.4</td>
<td>5.55</td>
<td>5.47</td>
<td>5.65</td>
<td>5.67</td>
<td>14.17</td>
<td>14.35</td>
<td>14.26</td>
<td>14.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0</td>
<td>0</td>
<td>0.53</td>
<td>0.76</td>
<td>2.16</td>
<td>2.21</td>
<td>0.88</td>
<td>0.37</td>
<td>0</td>
<td>0</td>
<td>4.88</td>
<td>4.63</td>
<td>4.56</td>
<td>4.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td><0.01</td>
<td><0.01</td>
<td>0.05</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.14</td>
<td><0.01</td>
<td><0.01</td>
<td><0.10</td>
<td><0.10</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>48.79</td>
<td>49.14</td>
<td>33.23</td>
<td>33.51</td>
<td>19.25</td>
<td>19.7</td>
<td>15.65</td>
<td>15.54</td>
<td>15.12</td>
<td>15.37</td>
<td>15.18</td>
<td>15.06</td>
<td>17.21</td>
<td>17.5</td>
<td>17.33</td>
<td>17.31</td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td>0.51</td>
<td>0.31</td>
<td>0.06</td>
<td>0.12</td>
<td>0.32</td>
<td>0.4</td>
<td>0.03</td>
<td>0.07</td>
<td>0.06</td>
<td><0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.1</td>
<td>0.2</td>
<td><0.10</td>
<td><0.10</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.05</td>
<td>0.02</td>
<td>0.62</td>
<td>0.59</td>
<td><0.01</td>
<td><0.01</td>
<td>20.48</td>
<td>20.27</td>
<td>20.11</td>
<td>20.24</td>
<td>20.27</td>
<td>20.17</td>
<td>10.4</td>
<td>11.34</td>
<td>11.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td><0.02</td>
<td><0.01</td>
<td>0.09</td>
<td>0.06</td>
<td><0.01</td>
<td><0.01</td>
<td>1.54</td>
<td>1.52</td>
<td>1.46</td>
<td>1.46</td>
<td>1.45</td>
<td>1.52</td>
<td>3.99</td>
<td>4</td>
<td>3.7</td>
<td>3.82</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.07</td>
<td>0.1</td>
<td><0.10</td>
<td><0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.99</td>
<td>100.78</td>
<td>100.39</td>
<td>100.91</td>
<td>100.78</td>
<td>99.17</td>
<td>100.38</td>
<td>100.11</td>
<td>99.09</td>
<td>99.18</td>
<td>99.54</td>
<td>99.61</td>
<td>99.81</td>
<td>100.6</td>
<td>100.09</td>
<td>100.02</td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Mg#</td>
<td>89.2</td>
<td>89.6</td>
<td>90.1</td>
<td>90.3</td>
<td>72.9</td>
<td>75.1</td>
<td>91</td>
<td>90</td>
<td>90.6</td>
<td>90.5</td>
<td>89.8</td>
<td>89.9</td>
<td>87.5</td>
<td>88.2</td>
<td>87.4</td>
<td>87.8</td>
<td></td>
</tr>
</tbody>
</table>

EDS analyses of the tiny amphibole grains associated to fluid inclusions (Amp FI) are reported for comparison. Ol I, porphyroclast; Ol II, neoblasts; Opx I, porphyroclast; Opx II, neoblast; Spl, spinel. mg#, Mg/(Mg + Fe tot) /C²100; cr#, Cr/Cr + Al /C²100.
in the host rock (Table 1). The absence of H₂O in fluid inclu-
sions does not indicate that the fluid was anhydrous: the asso-
ciation of Cl-pargasite + CO₂ inclusions testifies for the
reaction of CO₂–H₂O fluids with clinopyroxene to produce
amphibole, leaving residual CO₂ trapped as inclusions.

CO₂ melting temperatures (T_mCO₂) were recorded be-
tween −57.6 and −56.2 °C (Table 3). Despite this large
scattering of temperatures, only in a few inclusions Raman
analyses detected traces of H₂S (<0.1 mol.%): the T_m's var-
ation probably reflects thermal gradients within the sample
in the heating-cooling stage. A wide range of homogeniza-
tion temperatures (T_h) of the liquid phase was recorded be-
tween −39.2 and 31 °C (Fig. 6). Water froze at
temperatures of about 50 °C, and the first melting (T_e) was recorded between −33 and −29 °C (Table 3). Eutectic
temperatures are indicative of the presence of metals

Table 2
Representative trace-element analyses in clinopyroxene (cpx) and amphibole (amp).

<table>
<thead>
<tr>
<th>Sample</th>
<th>IN14</th>
<th>IN17</th>
<th>IN16</th>
<th>IN16</th>
<th>IN16</th>
<th>IN16</th>
<th>IN35</th>
<th>IN35</th>
<th>IN35</th>
<th>IN14</th>
<th>IN17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>Cpx core</td>
<td>i4cpx49</td>
<td>Cpx core</td>
<td>i7cpx20</td>
<td>Cpx rim</td>
<td>i16cpx15</td>
<td>Cpx rim</td>
<td>i16cpx17</td>
<td>Cpx core</td>
<td>i35cpx12</td>
<td>Cpx core</td>
</tr>
<tr>
<td>Sc</td>
<td>82</td>
<td></td>
<td>62</td>
<td></td>
<td>95</td>
<td></td>
<td>105</td>
<td></td>
<td>74</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>V</td>
<td>250</td>
<td></td>
<td>261</td>
<td></td>
<td>243</td>
<td></td>
<td>245</td>
<td></td>
<td>230</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Co</td>
<td>21.7</td>
<td>21.5</td>
<td>18.6</td>
<td>18.6</td>
<td>19.5</td>
<td>19.5</td>
<td>20</td>
<td>20</td>
<td>43.4</td>
<td>43.4</td>
<td>44.4</td>
</tr>
<tr>
<td>Ga</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>1.3</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Sr</td>
<td>148</td>
<td>151</td>
<td>168</td>
<td>175</td>
<td>158</td>
<td>145</td>
<td>388</td>
<td>423</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>17</td>
<td>12</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>38</td>
<td>25</td>
<td>43</td>
<td>47</td>
<td>40</td>
<td>41</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td><0.1</td>
<td>0.5</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>8</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td><0.4</td>
<td>13</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td><0.4</td>
<td>2</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>7.3</td>
<td>6.8</td>
<td>9.6</td>
<td>9</td>
<td>7.5</td>
<td>7.3</td>
<td>8.3</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>1.2</td>
<td>1.3</td>
<td>1.6</td>
<td>1.6</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>1.9</td>
<td>1.6</td>
<td>2.6</td>
<td>2.7</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>0.65</td>
<td>0.64</td>
<td>0.91</td>
<td>0.95</td>
<td>0.99</td>
<td>0.83</td>
<td>0.93</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>2.4</td>
<td>2.2</td>
<td>2.9</td>
<td>3.1</td>
<td>3.3</td>
<td>3.2</td>
<td>3.2</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.39</td>
<td>0.29</td>
<td>0.56</td>
<td>0.48</td>
<td>0.52</td>
<td>0.47</td>
<td>0.51</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>3.5</td>
<td>2.5</td>
<td>4.2</td>
<td>3.7</td>
<td>3.4</td>
<td>3.6</td>
<td>3.5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho</td>
<td>0.63</td>
<td>0.47</td>
<td>0.86</td>
<td>0.77</td>
<td>0.75</td>
<td>0.79</td>
<td>0.78</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>2.2</td>
<td>1.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.2</td>
<td>2.3</td>
<td>2</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>2</td>
<td>1.3</td>
<td>2.2</td>
<td>2.2</td>
<td>1.8</td>
<td>2</td>
<td>1.7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.29</td>
<td>0.19</td>
<td>0.29</td>
<td>0.33</td>
<td>0.22</td>
<td>0.29</td>
<td>0.29</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>1.2</td>
<td>0.7</td>
<td>1.2</td>
<td>1.3</td>
<td>1.5</td>
<td>1.3</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0.03</td>
<td>0.04</td>
<td><0.009</td>
<td>0.04</td>
<td><0.009</td>
<td><0.009</td>
<td>0.3</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>2.3</td>
<td>2.8</td>
<td>1.9</td>
<td>1.9</td>
<td>2.1</td>
<td>3.1</td>
<td>9</td>
<td>10.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.75</td>
<td>0.56</td>
<td>0.89</td>
<td>0.93</td>
<td>0.78</td>
<td>0.74</td>
<td>0.69</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td><3</td>
<td><3</td>
<td>83</td>
<td>166</td>
<td>83</td>
<td>83</td>
<td>582</td>
<td>831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>2818</td>
<td>3357</td>
<td>3177</td>
<td>3477</td>
<td>2698</td>
<td>3237</td>
<td>15227</td>
<td>14748</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3

Summary fluid inclusion properties.

<table>
<thead>
<tr>
<th>Host phase</th>
<th>Composition</th>
<th>Textural characteristics</th>
<th>Liquid H2O detection</th>
<th>Optical</th>
<th>Microtherm</th>
<th>Raman</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preserved</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reacted</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Size (l)</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Abundance</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Microtherm</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Raman</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IR</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Sample

- **Host phase:** Ol I, olivine porphyroclast; Opx I, orthopyroxene porphyroclast; Cpx, clinopyroxene; Microtherm., microthermometry; f, temperature of freezing; e, eutectic temperature; m, temperature of melting; h, temperature of homogenization to the liquid phase; Hhl, hydrohalite; Clat, clathrate.

Microthermometry of H2O–CO2 inclusions

<table>
<thead>
<tr>
<th>Sample</th>
<th>Host phase</th>
<th>T (C)</th>
<th>f (C)</th>
<th>e (C)</th>
<th>m (C)</th>
<th>h (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INJ7/6A Opx I</td>
<td>89.2</td>
<td>56.4</td>
<td>30.5</td>
<td>950</td>
<td>-113</td>
<td></td>
</tr>
<tr>
<td>INJ7/6B Opx I</td>
<td>72.3</td>
<td>56.3</td>
<td>57.6</td>
<td>24.2</td>
<td>-56.7</td>
<td></td>
</tr>
<tr>
<td>INJ23/1A Ol I</td>
<td>72.5</td>
<td>56.7</td>
<td>56.7</td>
<td>23.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inclusion-free clinopyroxene (Fig. 7d), water concentration ranges from 180 to 220 ppm, and increases noticeably upon approaching the grain boundary (600–800 ppm). Water enrichments are observed also within single crystals, where we document an additional vibration of water close to 3670 cm⁻¹ (Fig. 7f), which is attributed to the structurally bound OH in small nanometric paragase inclusions (Hawthorne et al., 1997; Fig. 7c and f). Rare clinopyroxene containing fluid inclusions (Fig. 7g) show similar
OH gradients, with hydroxyl-enriched rims (20–50 \text{\mu m}) as illustrated in Fig. 7h. Chemical imaging in the 3600–3800 cm$^{-1}$ region further shows that hydration of clinopyroxene is coherent with the course of fluid inclusions (lower half of Fig. 7i). Spectra from those areas surrounding the inclusions (lower half of Fig. 7h) contain an additional vibration at 3670 cm$^{-1}$, derived from the extrinsic OH in pargasite inclusions (compare Fig. 7h and i).

In orthopyroxene with no fluid inclusions, the chemical maps show a relatively homogeneous water distribution, with contents in the range of 80–100 ppm. In orthopyroxene containing fluid inclusions, a heterogeneous distribution of OH absorption intensities systematically higher in fluid inclusion rich areas is observed. Here, as much as 450 ppm H$_2$O has been measured, due to additional absorption from extrinsic H$_2$O (molecular) contained in the inclusions. Further, mapping revealed positive water gradients moving towards the fluid inclusions: from 80 ppm, at about a 100 \text{\mu m} from the fluid inclusion trail, progressively increasing close to the areas containing inclusions (up to about 200 ppm; not shown). A similar gradient seems to indicate an effective transition from molecular water into OH-bond, resulting from the loss from inclusions through dislocations and other defects (cf., Viti and Frezzotti, 2000).
7. DISCUSSION

7.1. The peridotites

Deformed spinel lherzolites represent a modally metasomatized lithosphere which underwent progressive recrystal-
iation at relatively low temperatures (≤ 1000 °C; Ferrando et al., 2008). Isochores calculated from fluid inclusion den-
sity data locate their depth of origin at 1.4 and 1.5 GPa, or 50–54 km (Holloway, 1981; Bakker, 2003). The petro-
graphy and mineral chemistry of peridotites indicate that meta-
somatism resulted during a single event, either by crys-
tallization from a melt or fluid phase, or by (melt−fluid)/solid reactions. Textural features, such as spinel being re-
placed by pargasite (e.g., Fig. 2d), and presence of pargasite inclusion trails in clinopyroxene (Fig. 4f) are indicative of (melt−fluid)/rock reactions.

Inferences on the composition of the metasomatic agents can be derived from the trace-element composition of clinopyroxene and amphibole (Fig. 3). Clinopyroxene shows ref-
ertilization as evidenced by selective enrichments in most incompatible elements (LREE, Pb, Sr, U, Th), marked with the depletion in HFSE. Amphibole mimics clinopyroxene trace-element patterns, except for higher Ba, Rb, Nb, Ta, Ti, and Cl (Fig. 3). Partition coefficients for trace elements are consistent with the clinopyroxene/amphibole relations-
ships obtained from natural and experimental data (Ionov and Hofmann, 1995; Tiepolo et al., 2001), and suggest equi-
librium behavior.

The observed trace elements enrichments are consistent with equilibration of lherzolites with an H$_2$O-rich metaso-
matic agent at high pressures: either an aqueous fluid, or a hydrous silicate melt probably evolved through porous flow (Bedini et al., 1997; Zanetti et al., 1999; Laurora et al., 2001; Ionov et al., 2002; Rivalenti et al., 2004). Meta-
somatism mediated by carbonate-rich melts seems unlikely, firstly because of the absence of geochemical unequivocal markers, such as fractionation of Ti/Eu or Zr/Hf, and ex-
treme LREE enrichment (up to 100 chondrite; Green and Wallace, 1988; Yaxley et al., 1991; Rudnick et al., 1992; Yaxley and Green, 1996). Further, at the considered pres-
ses, metasomatic carbonate melts would react with orth-
opyroxene to produce clinopyroxene, converting lherzolite into wehrlite (e.g., Yaxley et al., 1991; Rudnick et al., 1993). The investigated spinel lherzolites do not show any evidence for the reaction of orthopyroxene, excluding a similar scenario.

Based on the trace-element distribution in metasomatic minerals alone, however, it is difficult to discriminate be-
tween an aqueous fluid phase and a hydrous silica-rich melt as hypothetical metasomatic agents. The absence of a sub-
stantial U/Th fractionation is different from what would be expected from interaction with an aqueous fluid, but consistent with a silicate melt enriched in water (Stalder et al., 1998). Conversely, both the Cl−, and Ba-rich composition of amphibole, and the positive Pb/Sr correlation observed in amphibole and clinopyroxene suggest that the observed incompatible element increase was mediated via an aqueous fluid phase, since all these elements have high fluid/melt partition coefficients. The fractionation of Sr relative to Pb is also consistent with the equilibration with an aqueous fluid: Pb behaves significantly more incompatibly than Sr in H$_2$O fluids: Pb and Sr are incorporated at a similar rate only through partial melting processes in silicate melts, or in transitional fluids at higher pressures (cf., Brenan et al., 1994, 1995; Kessel et al., 2005).

Fig. 5. Raman spectra of (a) H$_2$O in fluid inclusions in orthopy-
roxene, and of (b) clinochlore (hydroxyls), (c) talc (hydroxyls), and (d) magnesite in reacted fluid inclusions in olivine. Clinochlore hydroxyl vibrations at 3450, 3638, 3673 cm$^{-1}$, from Kiepe et al. (2003); the additional vibration at 3565 cm$^{-1}$ might be indicative for excess of Al, or for the additional presence of humite (Frost et al. (2007)). In spectrum (d), non-assigned peaks correspond to host olivine.

7. DISCUSSION

7.1. The peridotites
Fig. 6. Histogram of homogenization temperatures to the liquid phase (T_h) recorded in fluid inclusions. Homogenization temperature intervals up to 50 °C were often registered within a single inclusion trail. n, number of measurements.

Fig. 7. Synchrotron infrared imaging of water distribution in olivine and clinopyroxene from deformed lherzolites. Each set of maps includes a microscopic image in plane-polarized light, and relative infrared maps in selected absorbance regions. (a) Investigated area in one olivine grain. PPL. (b) Absorbance map in the 3000–3600 cm$^{-1}$ region and calculated water contents in olivine (ppm). (c) Qualitative distribution map of OH absorbance for clinohlore, talc, and serpentine in the 3600–3800 cm$^{-1}$ region, which allows to qualify hydrated phases in olivine. (d) Clinopyroxene not containing fluid inclusions, PPL. (e) Absorbance map in the 3000–3800 cm$^{-1}$ region and relative calculated water contents in clinopyroxene (ppm). (f) Qualitative OH absorbance map in the 3600–3800 cm$^{-1}$ region relative to distribution of amphibole inclusions. (g) Clinopyroxene containing a trail of fluid inclusions, PPL. (h) Absorbance map in the 3000–3800 cm$^{-1}$ region and relative calculated water contents in clinopyroxene (ppm). (i) Qualitative OH absorbance distribution map in the 3600–3800 cm$^{-1}$ region relative to distribution of amphibole inclusions. Sizes of investigated areas are in micron. Measured water contents are drawn with a precision of 10’s of ppm (see text). a.u., arbitrary units.
7.2. The metasomatic fluid phases

To assess the nature of metasomatic agents involved in mantle enrichment processes in the Ethiopian lithospheric mantle, the chemical data from minerals are integrated with data from fluid inclusions. Fluid inclusions indicate that rocks have interacted with a Cl-rich \(\mathrm{H}_2\mathrm{O}-\mathrm{CO}_2 \) fluid, i.e., metasomatism was fluid mediated. Further, the high Cl-content in pargasite, and the common association of fluid inclusions with pargasite inclusions in clinopyroxene suggest that Cl-rich fluids were contemporaneous and parental to pargasite growth.

Fluids contained within the inclusions are dominated by \(\mathrm{CO}_2 \) (≥64 mol%). This corresponds to \(\alpha_{\mathrm{H}_2\mathrm{O}} \) of 0.2 of the fluid phase at the considered pressures. However, the original water content is underestimated, as infrared maps show \(\mathrm{H}_2\mathrm{O} \) diffusion from the inclusions to the host phase. The aqueous part of the fluid contains Cl, Na, and Mg – but not Ca – with salinities ranging between 10% and 14% in NaCl + MgCl\(_2\) eq. wt. (2 molal [NaCl-MgCl\(_2\)] solution). The Cl-content is high, and calculated between 4 and 5 in mol%, depending on the Mg/Na ratio. Cl-rich fluids should have also contained SiO\(_2\) and Al\(_2\)O\(_3\), as suggested by the formation of clinohlore and talc in inclusions reacting with olivine host (Pawley, 2003). At mantle conditions, high solubility of Si and Al is predicted, due to polymerization of these solutes in aqueous solutions, although the presence of CO\(_2\) and NaCl tends to counteract this process (Newton and Manning, 2000).

Aqueous fluids involved in mantle enrichment processes at high pressure (1–2 GPa), especially concentrated solutions, have different properties than pure \(\mathrm{H}_2\mathrm{O} \) fluids; high Cl-contents (>1 molal%) are known to strongly increase the solubility of metals (Mg, Fe, and Pb) and LILE (Keppler, 1996; Green and Adam, 2003; Manning, 2004). To better understand the possible effects of a high chlorine activity, trace-element compositions of model fluids in equilibrium with clinopyroxene have been calculated, using experimental partition coefficients for clinopyroxene-\(\mathrm{H}_2\mathrm{O} \) (\(D_{\text{Dcpx-H2O}} \)) and for clinopyroxene-\(\mathrm{H}_2\mathrm{O} \) 5 molal NaCl (\(D_{\text{Dcpx-brine}} \)) (Keppler, 1996; Ayers, 1998); the results are shown in Fig. 8a. Calculated patterns for model brines (5 molal NaCl in Fig. 8a) in equilibrium with clinopyroxene show increasing highly incompatible element abundance, associated with prominent Pb and Sr positive anomalies and negative HFSE anomalies. Conversely, \(D_{\text{Dcpx-H2O}} \) yields model pure \(\mathrm{H}_2\mathrm{O} \) fluids with relatively unfractinated patterns, undepleted in HFSE, and with significant enrichments only in Pb and U (\(\mathrm{H}_2\mathrm{O} \) in Fig. 8a). Model brines in equilibrium with clinopyroxene approach the composition of slab-derived brines (Fig. 8b: Scambelluri et al., 2002), and, to a lesser extent, that of carbonate-brine fluids in diamonds of eclogites (Fig. 8b; Tomlinson et al., 2009), but not that of carbonate-brine fluid in kimberlites (Fig. 8b; Tomlinson et al., 2009).

Thus, the metasomatic enrichment in the lithosphere beneath the Ethiopian plateau could have been induced by Cl-rich fluids preserved in fluid inclusions. Model trace-element composition appears to suggest similarities with patterns of slab-derived Cl-rich aqueous fluids. This last observation, however, should be taken cautiously, since geochemical inconsistencies with deep brines in diamonds could result from differences in the fluid composition (i.e., presence of a carbonate component), and properties at different pressures.

7.3. Fluid distribution and content in the Ethiopian lithosphere

In the African lithospheric mantle, metasomatic growth of amphibole driven by hydrous “fluids” is observed in several localities and supposed to have occurred during the early stages of mantle upwelling. The amphibole-rich mantle under the Chyulu Hill Volcanic Province of southern Kenya is considered to have been modally metasomatized during early stages of the plume rising in the East African Rift (Späth et al., 2001). In a similar way, the growth of amphibole ± apatite in spinel peridotites from Yemen is considered to have occurred during or shortly after the Oligocene by the influx of carbonatitic melts and hydrous fluids from the Afar plume (Baker et al., 1998). Besides, Cl-rich pargasite in spinel lherzolites of Zabargad Island (Red Sea) is interpreted to have grown just before the early rifting phase of the Red Sea (Agrinier et al., 1993). Metasomatism in spinel lherzolite suite demonstrates a major role for aqueous fluids also in the lithosphere beneath the Ethiopian plateau.

Minor pargasite in lherzolites is generally considered to be indicative of the reaction of mantle rocks with minor amounts of hydrous fluids or melts. The present study argues for the presence of significant amounts of Cl-rich C–O–H-fluids in the Ethiopian lithosphere, which have a low water activity, resulting from the presence of chlorine and other diluents (e.g., CO\(_2\)). In addition to amphibole, water was stored in olivine and pyroxenes. The minimum calculated water contents within these nominally anhydrous minerals range around 40 ± 20 ppm for olivine, 100 ± 20 for orthopyroxene, and 220 ± 20 for clinopyroxene, corresponding to a minimum water content of deformed lherzolites ≤ 150 ppm. These values are consistent with the water contents measured in nominally anhydrous minerals in spinel lherzolites (e.g., Ingrin and Skogby, 2000), and with equilibrium partitioning of water between olivine and pyroxenes at the considered pressures (Ingrin and Skogby, 2000; Bell and Rossman, 1992; Hauri et al., 2004).

Microinfrared maps of water distribution, however, identify zones of water enrichments at the scale of the individual grain, generally not readily available, when measuring water with single spot analyses: (i) In most samples, olivine shows incipient hydration and locally stores up to 200–400 ppm H\(_2\)O (e.g., micro- to nano-inclusions of magphyllosilicates; Fig. 7b. (ii) In clinopyroxene, H\(_2\)O contents show a gradient, with extreme enrichments (up to 700–800 ppm) in the last 50 μm at grain boundaries, and along intragranular bands in the internal parts (Fig. 7e and h). Such a zoning does not correspond to any other element (major or trace) zoning, with the exception of a slight La enrichment (Fig. 3); it could be considered suggestive of the presence of growth defects, probably resulting from recrystallization in presence of aqueous fluids.
These observations lead to the conclusion that locally, water amounts within deformed spinel lherzolites could have been significantly higher and up to 400–500 ppm, without any increase of the amount of amphibole in the rocks. Such an inhomogeneous water enrichment through lherzolites has profound effects on the physical and chemical properties of lithospheric mantle rocks: a heterogeneous distribution of those trace elements which are transported by aqueous fluids, and a local overstep of C–O–H peridotite solidus, inducing partial melting, without significant increases of temperatures.

7.4. Significance of Cl-rich fluids in a region of asthenosphere upwelling and flood basalts

At Hawaii and Azores oceanic settings, Cl-enrichment in the lithosphere is indicated by the high Cl/F ratios of melt inclusions in OIB, and is interpreted to reflect shallow interaction with sea-water or with deep-crustal brines (e.g., Michael and Schilling, 1989; Stolper et al., 2004; Seaman et al., 2004; Le Roux et al., 2006). A similar explanation cannot apply to the continental lithospheric mantle beneath the Ethiopian plateau. Here, metasomatism implies fluxes of C–O–H metasomatic fluid phases rich in Cl and incompatible elements into the lithospheric mantle, likely related to the upwelling of the Afar mantle zone. Interactions between metasomatic fluids and mantle rocks seem to have occurred heterogeneously, most likely by fracture migration, inducing selective enrichments in volatiles and incompatible elements (LILE and LREE) in the lithosphere. The source of metasomatic fluids should have been located either in the upwelling asthenospheric mantle, or in the lithosphere, where they started to migrate under the effect of increasing thermal anomalies.

The present data rise the question of Cl-enrichment in mantle fluids within the context of the geodynamic evolution of the East African region. The high water and chlorine content (4–5 mol.%) of fluids suggests the presence of a

Fig. 8. Trace-element composition of model aqueous fluids in equilibrium with clinopyroxene of Injibara lherzolites. The trace-element concentrations are normalized to primordial mantle (PM) using the data from McDonough and Sun (1995). (a) Trace-element composition of model aqueous fluids (pure H₂O and brines – 5 molal NaCl solution) in equilibrium with clinopyroxene, based on experimental partition coefficient data (Keppler, 1996; Ayers, 1998). (b) Comparison of model brine composition with trace-element patterns measured in Cl-rich fluid inclusions formed at mantle depth; compositional range of slab-derived brines generated by antigorite breakdown, from Scambelluri et al. (2002); carbonate-brine fluids in diamonds from peridotites and eclogites, from Tomlinson et al. (2009).
cycled crustal (i.e., altered oceanic lithosphere) component in their source. This is in agreement with the extreme enrichments in Pb, Ba, Th, U, and Sr preserved in amphibole and clinopyroxene, as generally assumed for sediments entrained in subducting lithosphere (e.g., Ben Othman et al., 1989). Recycling of carbon has been shown in carbonatite melts in oceanic peridotite xenoliths (e.g., Hauri et al., 1993) and can occur also for Cl, as Cl-rich fluids found in eclogites and serpentinites can be recycled into the convecting mantle (cf., Pyle and Mather, 2009, and references therein).

The upper mantle beneath Ethiopia was affected by the ancient (Pan-African) subduction processes. Therefore, it can be hypothesized that these elemental enrichments may be a remnant of ancient subduction processes that were preserved in a fossilized lithospheric–asthenospheric mantle, until the emplacement of hot mantle material generated their mobilization by dehydration–decarbonation reactions, forming an ascending metasomatic Cl-rich CO2–H2O fluid front. According to this hypothesis, the asthenospheric contribution to magmatism in the plateau would be a function of both time (early magmatism more affected by lithosphere; Vidal et al., 1991) and position with respect to Afar, which is the focus of extensional processes generated by the uprise of deep mantle material (Corti, 2009).

The preservation of textures, mineralogy, and fluid inclusions in a fossilized mantle for hundreds of Ma after the Pan African orogeny is, however, enigmatic. An alternative scenario is that CO2-brine fluids were derived by decarbonation of some LIP magmas (i.e., strong positive spikes of Ba and Pb). Finally, our findings complement the ongoing fluid inclusion research in diamonds and kimberlites (e.g., Izraeli et al., 2001; Kamenetsky et al., 2004, 2007; Klein-BenDavid et al., 2004, 2007; Tomlinson et al., 2009) and highlight the important role of Cl in aqueous fluids at mantle depth.

ACKNOWLEDGMENTS

We are grateful for the constructive reviews from M.A. Menzies and three anonymous reviewers. We are indebted to M. Serracino for his assistance during microprobe analyses. This work was funded by national (MIUR 2008) funds to M.L.F. and A.P. Rahman analyses facilities were provided by PNRA, the National Research Group for Antarctica. Access to the Synchrotron in Trieste was funded by Elettra and the EU.

REFERENCES

