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Minimal Upper Mantle Temperature Variations Consistent With Observed 
Heat Flow and Plate Velocities 

WILLIAM M. KAULA 

Department of Earth & Space Sciences, University of California, Los Angeles 

The momentum equations applied to 5 ø block means are integrated from the observed surface plate 
velocities downward to a depth of 280 km, assuming no lateral heterogeneities in density or viscosity. 
It is assumed that 85% of the global heat production Qc, = 0.85 x 4.0 x 10 •3 W comes from below 280 
km and that at this level the transfer is fully convective. A temperature field T is inferred at depth 280 
km by minimizing the quantity fit - Tol" dS + nX{Qc, - pCf(T - To)v,.dS}, where the integrals are over 
the sphere, p is density, C is heat capacity, v, is radial velocity, To is a prescribed mean, and X is a 
Lagrangian multiplier. Norms n, ranging from 1.5 to 2.5, are tried. The intervening temperature fields 
are then inferred, integrating the energy equation downward by using the previously calculated 
velocity field. This integration is subject to the limitations that the derivative of the temperature with 
respect to depth is everywhere sufficient to attain the fully convecting temperature, but never less than 
adiabatic. A surface heat flow based on observations plus age and tectonic setting is used. The 
principal inferences are: (1) the greatest lateral variations in temperature, -1000øC, occur with the top 
20 km; (2) the greatest advection, -200øC/m.y., occurs within the top 20 km; (3) below 50 km, the 
greatest departures of temperature from the mean are negative "tongues," reaching an extreme of 
about -800øC at depth 100 km; (4) below 50 km, heat transfer becomes more convective than 
conductive; (5) at the fully convecting level, 280 km, temperature variations are at least _+ 180øC about 
the mean. The principal defect in the entire calculation is unrealistically low temperatures arising from 
unrepresentatively low surface heat flows. The principal defect of the model probably arises from the 
assumption that all heat transfer at a depth of 280 km is representable by 5 ø means in velocity and 
temperature. 

INTRODUCTION 

The purpose of this paper is to infer upper mantle tempera- 
ture variations from plate velocities and heat flow data. My 
intent is to use these temperature distributions as a starting 
model for interpreting variations of the gravity field. They 
should also be of interest for interpreting petrological, seis- 
mological, and other data. 

The guiding principles of the approximate calculation 
carried out in this paper is that it be as complete as possible, 
subject to three main limitations: (1) the equations of motion 
are decoupled from the energy equation; (2) the boundary 
layer variation in temperature with depth is determined by 
local conditions; and (3) the resolution is limited to that 
expressible by 5 ø square means (or 36th degree harmonics). 
Even with these limitations, the work is a considerable 
elaboration on any similar analyses previously made. A two- 
stage calculation results. 

In the first stage, velocities as functions of radius, latitude, 
and longitude (or alternatively, radius, harmonic degree, and 
order) are calculated by starting from zero vertical velocity 
and given horizontal velocities at the surface and using the 
mass and momentum conservation equations with densities 
and viscosities prescribed as functions of depth only. In the 
second stage the temperatures are calculated by starting 
from uniform temperature and given heat flow at the surface 
and using the energy equation with the already calculated 
velocities and prescribed heat sources and thermal proper- 
ties (densities, heat capacities, and conductivities) at depth. 
The first-stage calculation is essentially identical to that of 
Hager and O'Connell [1978, 1979]. The second-stage calcu- 
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lation has some similarities to those of Chapman and Pollack 
[1975, 1980], Pollack and Chapman [1977], and Sclater et al. 
[1980]. It differs, however, in taking more explicit account of 
the velocity field. 

The second stage, as stated above, is insufficient, howev- 
er, to obtain a temperature distribution approximating that of 
a convecting regime. A global condition characteristic of this 
regime must be applied. The principal idea applied in this 
work is that of a fully convecting level. For such a level r,. we 
can write, for the total global heat flow QG: 

pCv,.Trc 2 dS • Qa 2 - Rr 2 dr dS = QG (1) 

where p is density, C is heat capacity, v,. is radial velocity, T 
is temperature, Q is surface heat flow, R is the density of 
intrinsic heat sources, a is surface radius, and the integrals 
are over the unit sr•here. In this studv. 280 km was chosen as 

the fully convecting level, as a reasonable compromise. At 
this depth the only regions of perceptible conductive transfer 
would be under old continents, which are of slight effect on 
the global heat budget. To go deeper, however, would risk 
more error in the velocity field extrapolated from the surface 
plate motions. 

There are three principal objections to the program out- 
lined here: (1) the heat flow is affected by relatively shallow 
phenomena; (2) the velocity field is affected by lateral 
variations in lithospheric theology; and (3) the temperature 
variation with respect to depth is affected by location with 
respect to the velocity field. 

Oceanic heat flow measurements can be unrepresentative- 
ly low because of convection in the shallow permeable layer. 
An adjustment for these effects near ocean rises is made in 
the heat flow compilation of Chapman and Pollack [1980], 
which is the one used. The question is to what extent is 
adjustment needed well off the rise, perhaps as far as 80 
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million years [Anderson and Skilbeck, 1981; Embley et al., 
1983]. The answer depends on detailed examination of the 
circumstances of the observations. Meanwhile, it is an open 
question as to whether some of the low heat flow values to 

the flanks of ocean rises indicate secondary return flows. On 
the continents there are marked heat flow variations arising 
from crustal sources [Sclater et al. 1981] as well as mantle- 
lithosphere interaction. In view thereof I assume a uniform 
heat flow at the base of the continental crust. Despite the 
appreciable irregularities of shallow origin, the heat flow 
must still be a strong constraint on upper mantle tempera- 
tures. 

Lateral variations in lithospheric rheology, arising mainly 
from temperature dependence, result in marked lateral varia- 
tions in stress [Hager and O'Connell, 1981] and hence must 
affect the velocity field. However, in the present calculation 
the stress field is not of interest per se, while its effects on 
the velocity field are not manifest until they are integrated 
over some distance. For this reason, the integrations of 
Hager and O'Connell [1978, 1979], with only radial variation 
in viscosity, were successful in reproducing the flow pattern 
in subduction zones. In the present calculation the main 
effect of lithospheric rheology is taken into account by 
starting from the surface velocity field in which nonzero 
divergence is confined to plate margins. Hence the error is in 
the second-order variations. 

In integrating the energy equation downward by using the 
5 ø averaged velocity field, provision must be made for 
contributions to the averaged advection v ß VT from smaller- 
scale variations. This provision necessitates assumptions 
that are based on boundary layer theory [e.g., Olson and 
Cotcos, 1980], computer experiment [e.g., McKenzie et al., 
1974], or more local analyses of data [e.g., Lewis, 1981]. The 
theoretical and computer models indicate that temperature 
variation with respect to depth does not increase monotoni- 
cally to the flanks of a plume, but the detailed data analyses, 
nonetheless, get a good fit with a monotonic increase. A 
global-scale model cannot hope to do better; in any case the 
variation of temperature from a monotonic gradient is small 
compared to the total temperature change between surface 
and asthenosphere. 

FUNDAMENTAL EQUATIONS 

Under the assumptions stated in the introduction, the 
conservation equations (7)-(9) in Kaula [1980] reduce to 

0 = v ß (pv) (2) 

0 = -V•Sp + O{rlOv,./Or}/Or + r/V•t2v (3) 

pCOT/Ot = •' (K•T) + qR + Z (4) 

where v is velocity, Sp is the variation of pressure from 
hydrostatic, r/is viscosity, K is thermal conductivity, qR is 
the radioactive heat source, and Z is the nonlinear term' 

z = -oCr. {VT- ,•r,,'} + ,VIE' El/2 (5) 

where I is the radial unit vector, T,' is the adiabatic 
gradient, and V: is the strain rate tensor. 

MOMENTUM INTEGRATION 

The integration of the poloidal velocity field was first done 
in terms of spherical harmonics, which results in sets of four 
first-order differential equations: one set for each harmonic 

degree and order, as described in Kaula [1975a] and Hager 
and O'Connell [1978, 1979]. The viscosities used were as 
given in Kaula [1980]. 

However, this procedure resulted in some unrealistic 
oscillations in vr ("Gibbs effects") to the flanks of rapidly 
spreading rises. These oscillations persisted to some extent, 
even when the surface harmonic coefficients were obtained 

by harmonic analysis of divergence along plate margins 
using 1 ø intervals: 

v• t 1 f = w Y• dB (6) 
4rrL 

where the notation is as in Kaula [1975a, 1980]: v, • is the 
poloidal velocity scalar; I in the indices is an abbreviation for 
degree and order l, m; L is l(l + 1); w is the spreading 
velocity, positive on a rise; Y• is the spherical harmonic; and 
the integration is along all plate margins. Equation (6) is 
obtained by applying the divergence theorem to the usual 
equation in terms of derivatives [(12) in Kaula, 1975a] and 
the relationship between the horizontal divergence and sca- 
lar coefficients of velocity [Kaula, 1978]. 

In the end it was found to be more accurate, as well as to 
be appreciably more economical, to integrate spatially. The 
equations for the harmonic coefficients [(45) and (47), Kaula, 
1975a] were multiplied by Y•, the conversion LY• = -Vu 2 Y• 
[(10), Kaula, 1975a] applied, and a summation made over I to 
obtain: 

2 1 
Vr' = -- -- Vr - -- D 

t' 

1 1 1 
t _ 

12,/ 6,/ 1 
t' 

(7) 

6,/ 2,/ 1 

rr•.' = r2 v,.- -•-(2D + v,) r 

1 1 1 
D' = V•,2vr + -D +- VH2rr,, 

r r 

where the primes denote radial derivatives, rr,. and rr• are the 
rr and rs components of stress, D is the horizontal diver- 
gence of the velocity, 

D = V,q-v = Vu 2v• (8) 

and Vu 2 is the horizontal Laplacian on the unit sphere: 

02 0 1 0 2 
ß 

V, 2=•+ cot0--+ • 02 (9) 00 sin20 0 

where 0 is co-latitude and 0 is longitude. The fifth equation 
for D may seem redundant to the second; however, it 
preserves the accurately known information of the surface 
horizontal divergence. 

Equation (7) was applied to 5 ø square means, starting from 
the surface with v,., rr,., rr, zero and v,, D at the observed 
valuesß In the horizontal direction, the Laplacians •H 2 U r 
and Va2v, were obtained by Fourier analysis along meridi- 
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ans and parallels to half the Nyquist frequency, l - 18. In the 
radial direction the step for Runge-Kutta integration, deter- 
mined mainly by the difficulties of the energy equation 
described below, was 10-km to 100-km depth and then 
increased in stages to 40 km for the last three steps to the 
assumed fully convecting level at 280-km depth. The greatest 
radial velocities attained were + 100 mm/yr under the south- 
east Pacific rise and -100 mm/yr in the Japan subduction 
zone. 

ENERGY INTEGRATION 

The integration of the energy is more complicated be- 
cause, for any feasible global representation, there are 
significant contributions to the nonlinear term Z from above 
the truncation level. Hence any integration must allow for 
these contributions, regardless of whether harmonic coeffi- 
cients or area means are employed. For clarity the discus- 
sion will be in terms of area means for depth z in a half space; 
the actual calculations took sphericity into account. Consid- 
eration was given to putting the mathematics in an appendix. 
However, the mathematics is so intertwined with physical 
reasonings that such an arrangement appears to be unfeasi- 
ble. 

Define sources S 

S = qR + Z- pCvOT/Ot (10) 

and heat flow Q as 

Q = - KOT/0r: KOT/0z (11) 

To integrate from a depth zi-• down to a depth zi, zi > zi-l, 
requires knowledge of the effective sources over the range 
from zi-1 to zi. If depth zi is close enough to depth zi-• that 
sources S and inverse conductivity 1/K can be assumed to 
vary linearly between them, then for the variables at depth 

and 

where 

Qi = Q•-• - (Si-• + Si)Az/2 (12) 

Ti = Ti-i + BiQi-i - GiXi-i - AiSi (13) 

Bi = (1/Ki-• + 1/Ki)Az/2 

Gi = (5/Ki-• + 3/Ki)(Az)2/24 (14) 

Normally sources Si-• will be given from a previous integra- 
tion step (starting with S0 = q• at the surface). The problem 
is to estimate Si. If dissipation E' E in (5) is neglected, then 
given the velocities u•, Uo, u• at z• from the integration of the 
momentum equations, an estimate of temperature gradients 
at depth z• is needed to calculate an advection. Define an 
extrapolated temperature • by assuming S• = S•_•' 

•i = Ti-• + BiQi-1 - (Gi + Ai)Si-• (15) 

Then for a preliminary estimate '•i0 of sources at depth 

•io = pC[v,.iOi/K- vHi' •,•i] + R (16) 

•io = pC[v,.i{Qi-i - (Si-l + •io)AZ/2}K- v,i' •,•i] + R 
where the subscript H denotes horizontal components and R 
represents the intrinsic sources, radioactivity plus cooling: 

R = qR -- pCO T/Or (17) 

Solving (16) for •0' 

•io = [pC{v,.i(Qi-• - Si-•Az/2)/K- vni' •,Pi} + R] 
[ 1 + pCv,.iAz/2K] 

(18) 

In (16), (18), and hereafter the depth subscript i, etc., is 
dropped on a priori quantities such as p, C, K, and R when 
they pertain to the same depth zi as the quantity on the left of 
the equation. 

The denominator in (18) thus appears to set a limit for this 
procedure of 

Az < - 2K/pC v,. (19) 

which, for example, is ---0.6 km in a subduction zone of v,. = 
- 100 mm/yr. 

However, regions which approach violation of (19) are 
constrained by other requirements detailed below. 

The estimates •i0 from (18) and Qi from (1 l) 

Q• = Q•_ • - (&_ • + •0)az/2 (20) 

will be incomplete for a given size As of area means (or 
corresponding maximum wave number/.0 because velocities 
v and temperature gradients Vr•Pi and Q/K are calculated 
from mean values of areas of dimension As. There will 

necessarily be significant contributions from shorter-wave- 
length components to the vertical heat transport (Q + 
v•pCT)i and to the sources Si through the nonlinear terms 
(4). These contributions require further constraints to deter- 
mine Si and thence Qi and Ti. Plausible constraints are 
numbered 1 through 5 in the following paragraphs. 

1. The energy flow in and out of the box of thickness 
north-south length As, east-west length ---sin 0 As, must 
balance. But lateral energy flows above the truncation level 
make it impossible to impose this condition locally; it is 
rigorous only for the entire globe: 

fs (pCv,.iT,+H,+ Q,)ri2dS= f [(pCv,.i-,T, '-, s 

+ Hi-• + Qi-•)(r• + Az) 2- Rr 2 dz dS = Qc, (21) 
Zt-I 

where the integration is over the unit sphere 

Hi = pC[(vrT)i- vriTi] (22) 

the advected heat transfer from above the truncation level, 
and Qo is the total heat transfer upward through level i. 

2. However, since Az << As, the contributions to the 
local energy balance from above the truncation level at depth 
Zi should not differ greatly from that obtained by imposing 
the integrands of (21) locally, i.e., 

•,. (ri + Azt2 = [pCu,.z-•Ti-• + Hi-• + 
ri 

+ -- Rr 2 dz - pC'v,.i$• - Oi (23) 
Fi 2 1-1 

3. If the source term S•_• at level i - 1 differed from 
•,-•)0 as calculated by (18), then the estimated difference at 
level i should be the same, i.e., 

•i = •io + Si-• - •(i-•)o (24) 
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4. If there are no temperature reversals, then by (12)- 
(13) the heat flow Qi should not be less than some minimum 
Qm -> O. Adherence to such a minimum gradient at greater 
depths implies Si+• = 0 by (12), whence, assuming Az and K 
constant, 

Si -- (Qi-i -- Q,O/Az - Si-•/2 (25) 

However, sometimes this procedure resulted in numerical 
instability. Hence the source term S was assumed to vary 
nonlinearly between zi-• and zi, and Si was set at 0 when Qi 
was set at Qm. 

The most evident choice for the minimum flow Q,• is that 
corresponding to an adiabat.' But in some locations this led to 
temperatures at the fully convecting level much too low to 
satisfy (1). Hence 

Qm = K(Tf- T•)/(zf- zi) (26) 

was used, where zf is the fully convecting level and Tf is the 
temperature there, obtained as described below in (29)-(31). 

5. The temperature Ti should not be greater than some 
maximum T•. Such a fixing of temperatures constrains not 
only the sources S but the flow Q as well, hence requiring a 
two-step extrapolation if the linear variation of S across Az is 
imposed. The resulting awkward expression, from (12)-(13) 
(assuming Az and K constant again), is 

-plausibly differ from the estimates given by (23)-(24). What 
norm should be minimized is not at all clear, however. To 
simplify matters somewhat, it is assumed that the norm is 
quadratic, n = 2, with a correlation coefficient v between 
S-SR and H-HR, where S• and H• are reference values. With 
these assumptions, the sum to be minimized becomes: 

F= -2v. 
O'S O's O' H 

+ ' r 2 dS 
O'Q o' r 

+ r 2 dS (32) 
o- H 

+2X{Qo-f[vrpC(T-To)+H+ Q]r2dS}.=min s 

where A denotes integration over the adjustable area only. A 
variety of reference values, S•, H•, QR, and T•, could be 
argued: zeros, global means, or estimates by (18), (24), (12), 
(13), and (23). In addition it could be argued that for T there 
is some transition between a "conductive" temperature 

Si 
- 3BiQi-• - (Gi + BiAg)Si-i + (Ai + BiAz/2 + Gi)(Qa + Si-•Az/2 - Qi-•)/Az - T• 

BiAz/2 - A i 
(27) 

where Qa is the flow KagT/C along the adiabat. Again, 
numerical instabilities resulted, so S had to be assumed to 
vary nonlinearly over Az to S = 0 where Q = Q,, and T = T.•: 

T.• = rf- Q,(zc- zi)/K (28) 

The temperatures Tf at the fully convecting level satisfying 
(1) were obtained by a minimum normed sum procedure, 
using a Lagrangian multiplier: 

F= fs T- To'•r2 dS + nh{QG- P C 
'rs v"(T-Tø)r2dSl'=min (29) 

where To is a global mean which must be prescribed, and 
integration is again over the unit sphere. Thence 

and 

T = To + X sign(v,.)v,. "-•= Tf (31) 

Hence plausibility requires n > 1. In a real convecting 
system with temperature-dependent viscosity dominated by 
subduction, possibly n > 2 is appropriate. 

Given that some of the source terms Si are constrained by 
the limits 4, 5, then the balance of the sources Si plus all the 
Hi, the advected heat transfers from above the truncation 
level, must be adjusted to satisfy condition 1, the global heat 
transfer equation (21). Again a minimum normed sum and 
Lagrangian multiplier procedure are indicated. Both Si and 
Hi should be included in this normed sum, since both can 

based on surface heat flow Q and assumed intrinsic sources 
R and a "convective" temperature based on that calculated 
for the fully convective level, (31). To give a smooth 
variation from To, Q0 to Tf 

TR = [{R 2 - (1 - z/zf) 2} - 5][Tf- To] + To (33) 

was actually employed, where 

• = (Tœ- To)K/Qoz•r (34) 

and 

R = (1 + •2)1/2 q_ (1 + (5- (1 + •2)l/2)(z/zf)P (35) 

Also, the expected magnitudes (rs, rrr•, rrr, and rrQ of the 
variations are somewhat arbitrary but necessary, as in any 
procedure where a normed sum is minimized. Using (12)- 
(13) to eliminate Q and T and OF/OH - 0 to eliminate H, the 
requirement OF/OS = 0 for any point within the adjustable 
area leads to the form 

where 

p 

S(O, qo)= [P(0, qo)- E(0, qo)X]/h 

h = (1 - p2)/0-s2 + Di2/crQ 2 + Ai2/crr 2 

•2(S) 

Di 
• S• +- (Qi-• - Si-lAZ/2 - Q•) 

•Q2 

mi 
•5- (Ti-• 
(TT 

-- BiQi-1 -- GiSi-I 

E = v,.pCAi + PO'H/ O' S 

(36) 

(37) 
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Fig. 1. Examples of temperature profiles' (a) ocean basin; South Atlantic, 42.5øS, 22.5øE ß (b) stable continent' Africa, 17.5øS, 32.5øE ß (c) 
ocean rise' Southeast Pacific, 22.5øS, 112.5øW (Note that the temperature curve should be even further reduced at shallow depth if it is to re- 
main below the basalt solidus, the dot-dash line.); (d) subduction zone; Japan, 37.5øN, 142.5øE. 

in which the coefficients are defined by (14). The global 
condition (21) can be written 

fS {pCur(• i -- TO) q- t• i q- (•H i q- Oi}ri 2 aS 

+ IA {pCv,.&Ti + &Qi}ri 2 dS = Qo (38) 

where (using OF/OH = 0 to obtain H•)' 

aL = r,- = -AaS 

Az 
&q/ = Qi- Oi = - -- 

2 

an, = n,- fi, = - fi, + 
IT H 

O' R 
(•i + (•Si- SR) + crn2k 

inside A 

(39) 

alii = Hi- t•i = H• - t•i + crn2X outside A 

aSi= Si- •i= (P- EX) - •i 

Using (39) to eliminate everything in favor of the estimates 
•Pi, Oi, •i, and X in (38) obtains 

X=[Qo- fs{pCvr(•'-To)+H•+Q'}r2dS 

- •-- (P - S•) r2dS crH2r 2dS 
O'R S 

+ fA (E2/h)r2 dSl (40) 

Then the sources S• are calculated from (36), the temperature 
T• and heat flow Qi by (12)-(13), and the supertruncation 
contribution H• by (39). 

In summary the temperature was determined by the 
energy equation, subject to the global condition, so long as it 
stayed within the limits defined by (26) and (28). Four 
examples are shown in Figure 1. A convenient parameter for 
characterizing a location is • defined by (34): the ratio of 
temperature rise to the fully convecting depth zf to the linear 
extrapolation from the surface heat flow Qoz/K. This ratio 
varied from about 0.05 at rises to 1.05 in regions of low 
measured Q0. 

DATA 

The plate velocities used were those of Minister and 
Jordan [1978]; the plate margins, those of Kaula [1975b]. 
The heat flow data were the 5 ø means of Chapman and 
Pollack [1980]: observed values extrapolated by correlation 
with tectonic setting age, as described in Chapman and 
Pollack [1975]. A significant change in this compilation 
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Plate 1. Effective sources -S/pC, in øC/m.y. averaged over the uppermost 10 km. As discussed in the text, the large values arise from 
advection, v- VT. 
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Plate 2. Temperatures at 10-km depth; they are dependent almost entirely on the prescribed surface heat flow less source effects in the 
hottest regions. 
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Plate 3. Temperatures at 280-km depth, which are dependent on the velocity field integrated down from the surface' a mean temperature 
of 1676øK ' a mean heat transfer of 67 mW/m 2' expression of velocities and temperatures as 5 ø square means; and the optimization of (29) 
with the norm n = 2.0. 

--800 2z.") 'r90 +t60 +240 +300 

Deg C 

Plate 4. Temperatures at 100-km depth, which are dependent on integration of the energy equation down from the surface plus limitations 
based on the temperatures at the fully convecting depth of 280 km. 
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TABLE 1. Solution Parameter Values 

Parameter 
Defining 

Symbol Equation U nit 

Norm for fully convecting n (29) 
level 

Standard Derivations 

Sources •rs (32) 
Heat Transfer 

Subtruncation •rQ (32) 
Supertruncation rr, (32) 

Temperature rrr (32) 
Correlation 

Sources and heat transfer •, (32) 
Temperature curve expo- p (35) 

nent 

Value(s) 

1.5, 2.0, 2.5 

W/m 3 1.0 x 10 -7 

W/m 2 3.0 x 10 -3 
W/m 2 3.0 x 10 -3 

øC 30.0 

0.5 

1.1 

between 1975 and 1980 was to increase the estimate in 

regions of rapid spreading to allow for hydrothermal circula- 
tion at rises. The topography entered into our calculation 
only to define the thickness of the continental crust. The 
margin between continent and ocean was taken as the 
minimum in the hyposometric curve, about 1.5 km below sea 
level. 

The continental crustal thickness was calculated by as- 
suming Airy isostasy. The continental heat source content 
qR followed the model of Chapman and Pollack [1975] and 
Pollack and Chapman [1977]. The oceanic crustal thickness 
was assumed to be 6 km and the heat source content qR to be 
10 -7 W/m 3 (10 -6 ergs/cm3/s). 

The mean temperatures and material parameters (density, 
thermal expansivity, thermal diffusivity, and viscosity) used 
were those given in Table 4 of Kaula [1980]. In addition, an 
intrinsic heat source density (q• - pCOT/Ot) of 2.5 x 10 -8 
W/m 3 in the mantle was assumed. From a purely spatial 
integration, such as in this paper, there is no way to 
distinguish radioactive sources from cooling. Such a dis- 
crimination requires a temporal integration as well. 

COMPUTATIONS AND RESULTS 

Aside from the surface field values and material properties 
outlined in the previous section, there are only seven neces- 

sary parameters for the model developed here. These are 
given in Table 1. However, of these parameters, only the 
fully convecting level norm exponent n was found to have a 
significant effect, since the others act only through the level- 
by-level adjustment equation (32). For the reference values 
S•, H•, and Q• the extrapolated estimates (24), (23), and 
(20) were used. For TR the smooth curve (33) was used. 

Table 2 summarizes the effects of varying the fully con- 
vecting level norm n. The greater value of n = 2.5 leads to 
implausibly large temperature extremes around rises, while 
the lesser value of 1.5 leads to an implausibly choppy 
temperature pattern, in part an exaggeration of "Gibbs 
effects" in the velocity field. All solutions obtain a maximum 
temperature range of --- 1500øC at about 10-km depth, a rather 
unavoidable consequence of the extraordinary range from 16 
to 423 mW/m 2 in observed heat flow. This temperature range 
is greater than is petrologically permissible, as indicated in 
Figure l c. Given the constraint of an adiabat to the fully 
convecting level, there necessarily must be an extremum of 
source terms S or advection--approximately -S/pC by (5) 
and (10)--at very shallow depth below regions of high heat 
flow. Most notable is the southeast Pacific Rise, where the 
advection must average about -200ø/m.y. in the top 10 km. 
(In contrast, typical oceanic crust radioactivity, -q•/pC is 
only - 10ø/m.y. and the mean intrinsic sources of the mantle, 

TABLE 2. Summary of Solution Properties 

Depth, km 

Property 10 20 50 100 180 280 

Temperature, øK 
Mean 570 770 1218 1541 1619 1676 

Extremes (Relative to Mean) 
n = 1.5 min -213 -387 -699 -802 -528 - 178 

max + 1208 +965 +532 +233 + 193 + 185 

n = 2.0 min -234 -387 -700 -809 -545 -255 
max + 1312 + 1048 +616 +371 +280 +274 

n = 2.5 min -234 -467 -701 -809 -592 -322 
max + 1319 + 1137 + 706 +407 + 373 + 369 

Conducted Flow, m W/m 2 
n = 2.0 min 1.3 1.1 1.2 1.5 1.9 

mean 66.6 52.1 36.3 8.5 3.0 
max 376.3 224.7 109.0 62.9 33.4 

Convected Flow, mW/m 2 
Mean 2.3 16.2 31.6 59.2 64.4 

Sources, 10 -7 W/m 3 
n = 2.0 min -55.5 -301.3 -38.1 -6.0 - 1.3 

mean 2.1 - 1.4 -0.3 -0.0 0.0 

max +88.5 +36.6 + 13.5 +6.2 + 1.0 

2.0 
2.4 

2.7 

64.8 

0.0 

0.0 

0.0 
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-qR/pC + OT/Ot, are about -0.2ø/m.y.) In the formalism of 
this paper the large local convective heat transfer associated 
with partial melting, etc., must be nonlinear variation in 
sources S between level zi-! and level zi at which the 
maximum condition (28) is satisfied. From (12): 

(S)i-!/2 = (Qi-! - Qi)/Az (41) 

Plate 1 is a plot of these averaged sources converted to 
units of advection (øC/m.y.) by application of the factor 
-1/pC. The maximum averaged advection decreases from 
190ø/m.y. in the top 10 km to 130ø/m.y. over 10-20 km depth, 
50ø/m.y. over 40-50 km, 16ø/m.y. over 90-100 km, 6ø/m.y. 
over 180-200 km depth, etc. 

Plates 2-4 give the temperatures at depths of 10 km, 280 
km, and 100 km. The most implausible features in these 
plots, the very low temperatures --- 1000 km, of --- 15 m.y., off 
rapidly spreading rises, are the consequence of low observed 
heat flows: for example, 32 mW/m 2 at -2.5 ø latitude, 237.5 ø 
longitude; 34 mW/m 2 at -325 ø, 92.5 ø. These are probably the 
result of measurements in regions of permeable sediments 
where the temperature gradient is depressed by hydrother- 
mal circulation [Anderson et al., 1977; Sclater et al., 1980; 
Anderson and Skilbeck, 1981]. 

As discussed in the introduction, judgment as to the extent 
that these irregular appearing patches of low temperature are 
real must depend on more detailed examination of heat flow 
observations. 

CONCLUSIONS 

The fundamental premises of this paper are: 
1. The velocity field to depth 280 km does not differ 

significantly from an extrapolation from the surface field that 
takes into account only radial variation in viscosity and 
density. 

2. Eighty-six percent of the heat flow out of the earth, 4 
x 1013 W, comes from below 30 km. 

3. The heat transfer at 280-km depth is entirely convec- 
tive. 

4. The temperature gradient with respect to depth is 
everywhere at least adiabatic: OT/Oz -> a g T/C. 

5. The surface heat flow field of Chapman and Pollack 
[1980] is correct. 

6. The surface velocity field of Minster and Jordan 
[1978] is correct. 

7. The material parameters and mean temperatures of 
Kaula [1980] are correct. 

8. The temperature and velocity fields are adequately 
represented by 5 ø square means. 

Given these premises, the following inferences seem rath- 
er ineluctable: 

1. The greatest lateral differences in temperature, 
---1500øC, occur within the top 20 km. 

2. The greatest nonlinear terms in the energy equation, 
---200øC/m.y., occur within the top 20 km. 

3. Below ---50-km depth, the greatest departures in tem- 
perature from the mean are negative "tongues," which 
reach an extreme of about -825øC at depth ---100 km. 

4. Below ---50-km depth, heat transfer is more convec- 
tive than conductive. 

5. At the fully convecting level of---280 km, temperature 
variations are at least _ 180øC about the mean. 

These inferences are not sensitive to the one major 
parameter left free by the premises, the norm n on the fully 

convecting level condition, (29). The nonlinear terms more 
that 10ø/m.y. over the oceans must be advection, v. VT, 
rather than dissipation, r•k2/2pC, which for plausible strain 
rates averaged over •> 100 km and 3 x 10 -7 yr [Kaula, 1980] 
could hardly be more than 10ø/m.y. See McKenzie and Jarvis 
[1980] for a similar conclusion based on thermodynamic 
arguments. 

Thus it remains to question the premises. 
Premise 1 implies negligible effect of shallow inhomogen- 

eities on the velocity and may seem at first sight to contra- 
dict various force balance models involving "slab pulls," 
"ridge push," etc. [e.g., Forsyth and Uyeda, 1975]. Howev- 
er, these models are incorporated by starting from the 
observed surface velocities; the premise is more accurately 
stated as having no significant nonlinear departures from the 
flows inferred from the surface velocities. 

Premise 2 regarding heat sources is really that 50% of the 
heat outside that convectively transported comes from be- 
low 30 km, since about 70% of the total is lost by cooling of 
the spreading oceanic lithosphere [Sclater et al., 1980]. 

Premise 3, a fully convecting level, is contrary to indica- 
tions of the tectosphere of Jordan [ 1979] if applied at a depth 
of 280 km, since at this depth there may still be perceptible 
conductive transfer under old continents. However, these 
regions are of slight contribution to the global heat budget. 
More serious, the implementation of the fully convecting 
level hypothesis at depth 280 km by the optimizing condition 
(29), with uniform norm n, lead to temperatures which may 
be too high in subduction zones (but it should be recalled 
that these temperatures are 5 ø block means). Application at a 
greater depth, however, would make premise 1 (no effect on 
the velocity field of lateral inhomogeneities, etc.) more 
wrong. A compromise might be to use a higher norm n for 
temperatures below the mean, T < To, than for those above. 

Premise 4 regarding the limit on temperature gradients is 
somewhat arbitrary; it does not come from physical necessi- 
ty. But, as indicated by boundary layer theory [Olson and 
Cotcos, 1980], contradictions are of limited extent and are 
not inferable from more detailed examination of observa- 

tions [Lewis, 1981]. In any case, their global significance is 
slight. 

Premise 5, the correctness of the surface heat flow field, is 
the most questionable because of the data sparsity. Ironical- 
ly, the most dubious low temperatures probably arise from 
areas of some data, but limited and nonrepresentative (be- 
cause of hydrothermal circulation, etc.), rather than areas of 
no data at all, where the plausible extrapolation based on age 
and tectonic setting was used by Chapman and Pollack 
[1975, 1980]. 

Premise 6, (the velocity field) is as sure as the plate 
tectonic hypothesis, while Premise 7 (material parameters) is 
essentially a corollary of premise 1: given the kinematics, it 
takes an appreciable depth--more than 280 km--for physical 
effects to make a perceptible difference. 

Premise 8 (representation by 5 ø square means) appears to 
be quite questionable. A harmonic analysis of the radial 
velocity Vr led to a rather slowly decreasing spectrum. Hence 
an appreciable portion of the heat transfer v,.AT could be 
provided by variations of shorter scale than 5 ø . 

Inferences 1-4 stated above thus appear to be rather firm. 
But the temperature variations at the fully convecting level, 
_+ 180øC, may be too high. 

All the inferences are adumbrated in earlier studies. The 
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temperatures under stable areas, Figure l(a, b), fall within 
the range of earlier studies, such as Sclater et al. [1980]. The 
high-temperature differences and advection in the top 20 km 
are necessary implications of petrological studies of ocean 
rise conditions, such as Bottinga and Alldgre [1978], as well 
as more detailed geophysical analyses, such as Lewis [1981]. 
The temperatures about 800øC below the mean at -100-km 
depth occur in thermal models of subduction zones, such as 
Toks6z et al. [1971] and Bird [1978]. However, a global 
solution, although unavoidably crude, is necessary to con- 
nect surface-data-based crust and lithosphere models to 
more comprehensive mantle convection studies. 
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