On the significance of ultra-magnesian olivines in basaltic rocks

J.K. Keiding1, R.B. Trumbull1, I.V. Veksler1,2, and D.A. Jerram3

1GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
2Technical University Berlin, Department of Mineralogy and Petrology, Ackerstrasse 71-76, D-13355 Berlin, Germany
3DougalEARTH Ltd., 12 Nevilles Cross Villas, Durham DH1 4JR, UK

ABSTRACT

Ultra-magnesian olivines in basaltic rocks or magma are here defined by a forsterite proportion [F₀ = Mg/(Mg + Fe) in molar percent] greater than the maximum F₀91.5 known from Earth’s mid-ocean ridge systems. They are relatively common in Archean komatiites and have also been reported from several Phanerozoic large igneous provinces. The presence of ultra-magnesian olivines is generally interpreted as evidence for melts with extremely high MgO concentrations (komatiites) and high eruption temperatures. Such melts are considered to be hallmarks of a hotter mantle in the early Earth and of thermal anomalies related to Phanerozoic mantle plumes. Here we show that the link between ultra-magnesian olivines and komatiitic melts is not straightforward. The composition of melt inclusions trapped in ultramagnesian olivines from the Etendeka province of Namibia contradict the predicted 24 wt% MgO for parental melts and 1680 °C mantle potential temperature. Instead, the trapped melts do not exceed 17.5 wt% MgO, and the maximum potential temperature indicated by these compositions is 1520 °C. We show that ultra-magnesian olivines can also be produced by protracted melt extraction from the mantle source, and that this process also leaves a distinctive depletion in incompatible trace elements.

INTRODUCTION

Constraining the original melt temperatures of basaltic rocks is an important step in understanding how variable mantle temperature is at present, and how it may have varied through Earth history. Arguably the best geothermometer for this is based on the Fe-Mg solid solution of olivine in equilibrium with basaltic melt, which follows well-established thermodynamic relationships among temperature, pressure, and phase composition. These relationships form the basis for comparative studies of melting temperatures for modern and ancient settings (mid-ocean ridge systems, oceanic islands, large igneous provinces [LIPs]; Green et al., 2001; Putirka, 2008; Putirka et al., 2007), and they are also used to estimate parental melt composition of more evolved basaltic suites. The presence of ultra-magnesian olivines (F₀ >91.5) in komatiites is consistent with olivine-melt equilibrium relationships in these high-Mg rocks (by definition, >18 wt% MgO). Ultra-magnesian olivines in komatiites predominantly occur as phenocrysts, clearly distinguishable from those formed by crystal accumulations (Jerram et al., 2003). Komatiites are almost absent in the Phanerozoic record (the single known locality is Gorgona Island, Colombia), but ultra-magnesian olivines are not. They have been discovered in many Phanerozoic LIPs, i.e., Gorgona Island from the Caribbean oceanic plateau (Revillon et al., 2000), the Siberian Traps (Arndt et al., 1995), the North Atlantic LIP in West Greenland (Larsen and Pedersen, 2000) and Baffin Bay (Francis, 1985; Vaxley et al., 2004), the Emeishan LIP in southeast China and northern Vietnam (Hanski et al., 2010), the Karoo LIP in Antarctica (Heinonen and Luttinen, 2010), and the Paraná–Etendeka LIP in northwest Namibia (Thompson and Gibson, 2000), the subject of this paper. Shared features of ultra-magnesian olivines in these provinces are that they are rare, occurring in just a few localities, and they are too Mg rich to be considered equilibrium phenocrysts in the basaltic host rocks. It is significant that these olivines coexist in the same hand specimen with more much abundant, less magnesian crystals (F₀54–90), the compositions of which are close to equilibrium with the Mg# of the host rocks, and can therefore be considered as phenocrysts. It follows that the ultra-magnesian olivines are not phenocrysts in the present host, but represent xenocrysts. The high CaO contents in these olivines clearly distinguish them from entrained crystals of mantle olivine, and most studies have concluded that the ultra-magnesian crystals originated from an unerupted komatiitic melt and were incorporated into a second, more evolved magma. We emphasize that this conclusion is based only on olivine and bulk-rock compositions. However, olivine compositions constrain only the Mg# [MgO/(MgO + FeO) in molar percent] of the equilibrium liquid and not its MgO concentration, on which the inference of a komatiitic affinity and high temperature of the parental melts critically depend. To calculate the melt MgO requires information on its FeO content.

This study presents an example where original melt compositions are recovered directly by analysis of inclusions trapped in the ultra-magnesian olivines. This removes the dependence of the results on the bulk rock composition and provides a valuable test of the relationships of ultra-magnesian olivines to melt temperatures.

XENOCRYSTIC ORIGIN OF ULTRA-MAGNESIAN OLIVINES

We studied olivine-phryic dolerites from 22 dikes in the Henties Bay–Outjo dike swarm from the southern Etendeka Province of Namibia (Thompson et al., 2001; Trumbull et al., 2004, 2007). The samples are basaltic to picritic tholeiites (see Table DR1 in the GSA Data Repository1) with Mg# up to 79.4, they have a wide range of MgO contents (7.0–19.4 wt%), and olivine core compositions are characterized by highly variable forsterite contents (F₀85–90; Table DR2). Ultra-magnesian olivines (>F₀91.5) were found in four samples, including the one first described by Thompson and Gibson (2000), who interpreted these Mg-rich olivines to indicate nonerupted komatiitic melt. Most olivines with F₀ >85 and all of the ultra-magnesian grains plot above the olivine-liquid equilibrium line for Kᵦ = 0.31–0.35 (Fig. 1A), and we interpret them as entrained xenocrysts. This is supported by the range of olivine compositions in single samples (Fig. 1B) and by the presence of thin (5–10 μm) Fe-enriched rims (to F₀80) on some grains due to reequilibration with the host magma. The bulk rock compositions in this case are clearly unsuited to investigate the melts from which the olivine crystallized. We prefer instead to use melt inclusions that are directly linked to the host olivines.

ULTRA-MAGNESIAN OLIVINE-HOSTED MELT INCLUSIONS

Melt inclusions range in size from 10 to 70 μm, are typically round, and are partly to completely crystalline, with daughter crystals of Al-rich clinopyroxene, Al-rich orthopyroxene, and spinel (chromite). Melt inclusions were heated to homogenization at 1350 °C before analysis of major and trace elements by electron microprobe and secondary ion mass spectrometry (see the methods section in the Data Repository). Measured compositions (Table DR3) were corrected for post-trapping crystalization on inclusion walls by incremental addition of equi-
librium olivine (see the Data Repository). After correction, 58 of 66 homogenized inclusions yielded compositions consistent with Fe-Mg equilibrium with the olivine host, and these are considered reliable estimates of the entrapped melts (Table DR4; Fig. 2). A key feature of these compositions is the low FeO content compared with the bulk rocks, a vital clue to their origin, as described herein. We recognize that low FeO in melt inclusions can be an artifact caused by a post-entrapment process known as iron loss (Danyushevsky et al., 2000, 2002), whereby equilibration of inclusion walls with the bulk olivine drives inclusions toward lower FeO values and higher MgO than in the original melts (thus higher Mg#). Procedures to recognize and compensate for iron loss are well established, and we conclude that the low FeO contents of melt inclusions in our study are not due to that process. The best evidence for this is that iron loss results in unreasonably high olivine-melt K_{eq} values (>0.35), which are not observed for 90% of the inclusions reported here. Although the exceptional eight inclusions do yield high K_{eq} values, compositional gradients in the olivine walls adjacent to them are the reverse of what iron loss would produce (Fig. DR1). We attribute the high K_{eq} values of the eight outlier inclusions to unintentional overheating. Inclusions most affected by overheating are those with the lowest trapping temperatures and most evolved compositions, which are not of primary interest here.

POTENTIAL TEMPERATURE ESTIMATES

The 58 inclusions considered to represent equilibrium melts have 9.3–17.5 wt% MgO and Mg# values from 66.5 to 82.5 (Fig. 2; Table DR4). Olivine-melt equilibrium temperatures calculated for these compositions (following Putirka et al., 2007) range from 1246 °C to 1395 °C, with ultra-magnesian olivine and trapped melts at the upper end of this range. More useful than crystallization temperature for many purposes is the potential temperature of the mantle source, T_p, which expresses the mantle temperature projected along the solid-state adiabat to surface pressure. There are different ways to derive potential temperature (Herzberg et al., 2007; Herzberg and Gazel, 2009; Putirka, 2005; Putirka et al., 2007), and some require knowledge of variables that are difficult to accurately determine (e.g., degree of melting and pressure of melt formation). We use a simple relationship linking potential temperature in degrees Celsius with melt MgO concentration in weight percent (Herzberg et al., 2007; Herzberg and Gazel, 2009):

$$T_p = 1463 + 12.7 \text{ MgO}_\text{wt\%} - 2924 / \text{MgO}_\text{wt\%}.$$

(1)

This formula allows one to calculate and compare T_p for any primary melt with a known MgO content. The maximum T_p for the Etendeka ultra-magnesian olivines and trapped melts calculated in this way is 1520 °C, which is within the range of values for Hawaii and Iceland (Herzberg et al., 2007; Herzberg and Gazel, 2009; Herzberg and O’Hara, 2002; Ribe and Christensen, 1999), but more than 150 °C lower than the 1680 °C inferred from an earlier study lacking melt inclusion data (Thompson and Gibson, 2000). Applying Equation 1 to the calculated melt of Thompson and Gibson (2000) results in a T_p of 1650 °C, which is still more than 100 °C higher than our estimate. We explain the higher temperatures estimated previously by the combination of bulk rock compositions with data from Mg-rich olivines that are xenocrysts in the rocks (Fig. 1). Instead of the

![Figure 1. MgO-FeO relationship between olivines and rocks from Etendeka province (Namibia). A: Olivine forsterite content versus Mg# of rock containing them. Individual olivines are short horizontal bars; average olivine compositions are shown as circles. Dashed lines represent olivine melt equilibrium compositions for $K_{eq} = 0.31$–0.35. Olivines plotting to left of dashed lines are interpreted as xenocrysts to rocks containing them, whereas olivines to right of lines are a result of olivine accumulation. Ultra-magnesian olivine samples studied here are indicated by arrows. B: Frequency histogram of olivine composition (Fo in mol%) from four samples indicated in A.](image-url)
predicted komatiitic melt with 24.0 wt% MgO (Thompson and Gibson, 2000, based on 11 wt% FeO), the observed melts actually have a maximum of 17.5 wt% MgO and ~7 wt% FeO. The important point is that both of these melt compositions can crystallize Fo93 olivines because they have the same Mg#. As pointed out by Herzberg and O’Harra (2002) and Herzberg et al. (2007), the process of dynamic or critical melting of the mantle can result in low melt FeO contents and high Mg#. The dynamic melting scenario envisions separation of small melt increments (1–2 vol%) from the source as it melts, leaving a successively more depleted residue in a rising mantle column (Elliott et al., 1991; Langmuir et al., 1977). This process offers an alternative explanation for ultra-magnesian olivines, and there is independent evidence for it in the minor and trace element composition of melt inclusions in the Etendeka olivines.

TRACE ELEMENT CHARACTERISTICS

Strong diversity of incompatible element abundances is a first-order feature of the Etendeka melt inclusions, both in single samples and individual crystals (Table DR4; Fig. 3). The lack of correlation between inclusion compositions and host forsterite content (Fig. 3) indicates that fractional crystallization did not control the observed melt diversity. Instead, we envisage a model where trapped melts are diverse because they are products of incremental melting and have not undergone mixing (Sobolev and Shimizu, 1993; Gurenko and Chaussidon, 1995). It is an accepted concept that basaltic magma represents an aggregate of melt increments generated by low-degree partial melting at the source and then mixed during ascent and storage. The value of melt inclusions is their ability to display these fine-scale features of melt variability that are lost in magmas that crystallize as bulk rocks.

The rare earth element (REE) concentrations of melt inclusions are especially illustrative of their diversity. Most inclusions have relatively flat REE patterns on a chondrite-normalized diagram, similar to those of the host dikes (Fig. 4). A second group of inclusions has steeper REE patterns, and ratios from melt inclusions plotted against host olivine compositions. Range of bulk rock compositions for these samples is shown as gray field for comparison. Symbols as in Figure 2.

ACKNOWLEDGMENTS

We are grateful to Oona Appelt for assistance with the electron microprobe and Michael Wiedenbeck for help with the secondary ion mass spectrometry analysis. The Deutsche Forschungsgemeinschaft (Priority Programme SPP-1375 SAMPLE) and the Carlsberg Foundation supported this work. We thank three journal referees for constructive reviews that improved the manuscript.

CONCLUSIONS

The main conclusion of this study is that ultra-magnesian olivines in basaltic rocks are not sufficient proof for high-temperature, komatiitic primary melts. The high Mg# in melts needed to crystallize Fo93 olivine can also result from Fe depletion of a mantle column undergoing dynamic melting. The melt inclusion data reported here suggest that Etendeka ultradepleted melts can also form by melting an already-depleted mantle source, but there is no evidence for strongly depleted mantle in the extensive literature on Etendeka dikes and lavas. The fact that single olivine crystals have trapped a range of melt compositions, only some of which are ultra-depleted, is consistent with a scenario of dynamic melting, with random trapping of variably mixed melt increments during olivine crystallization (Fig. 3).

Figure 3. Selected element concentrations and ratios from melt inclusions plotted against host olivine compositions. Range of bulk rock compositions for these samples is shown as gray field for comparison. Symbols as in Figure 2.

Figure 4. Chondrite-normalized rare earth element patterns of studied melt inclusions. Bulk rock dike compositions for four samples are shown as gray field (data in Table DR5 [see footnote 1]). Normalizing factors are from Sun and McDonough (1989).
REFERENCES CITED

