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[1] The heat transport scaling relationships for fluids heated from within and below are
established based on numerical calculations of isoviscous Boussinesq convection at
infinite Prandtl number. The internal temperatures scale in a way that is similar to the
internally heated case but with an offset equal to the average of the two boundary
temperatures, reflecting the underlying temperature structure of bottom-heated convection.
The heat fluxes through the boundaries scale as a linear combination of the end-member
modes of heat transport, consistent with the effects of internal heating on the interior
temperature. The boundary layer thicknesses, however, depend on H and Ra in a
nonintuitive way. As the internal temperature increases with the addition of internal
heating, the upper thermal boundary layer thickens despite the increased temperature drop
across the layer (the reverse is true for the bottom boundary layer). This is inconsistent
with the idea that the boundary layer thickness is controlled by a stability condition
on the local Rayleigh number, which would predict that the boundary layer would thin as
the temperature drop increases. Deriving boundary layer thicknesses from the scalings for
heat flux and boundary layer temperature drop provides an excellent fit to the model
results and reveals the importance of plumes arriving from the other boundary layer in
establishing the boundary layer thickness. This suggests that, although widely used,
boundary layer stability analysis is not an accurate description of the processes controlling
boundary layer thickness in systems with two active boundary layers at moderate Ra.
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1. Introduction

[2] Convecting planetary mantles transport heat from
below, as well as heat generated within them. About 10%
of the heat flow at the surface of the Earth, for example, is
thought to come from the core, driving the geodynamo
[Davies, 1999]. Europa’s floating ice shell is another exam-
ple, where tidal heating contributes both an internal and a
basal heat source (from heating in deeper layers). This
situation is known as mixed-mode heating, and it is com-
mon in terrestrial planet mantles as well as the silicate
mantles and floating ice shells of the outer-planet satellites.
[3] Despite the ubiquity of mixed-mode heating, plane-

tary thermal modeling to date has typically employed end-
member parameterizations with internal or bottom heating
only [e.g., Hauck and Phillips, 2002; Hauck et al., 2004;
Reese et al., 1999]. These parameterizations have become
quite sophisticated, accounting for complex rheologies and
spherical-shell geometry [Reese et al., 2005], but attempts
to model mixed-mode heating have been few [Sotin and
Labrosse, 1999], and did not provide a scaling for the
structure of the bottom boundary layer or the heat flow

through the base as a function of the convective parameters.
Internal heating modifies the interior temperature of a
convecting layer. This provides a feedback, through
temperature-dependent viscosity, that acts as a thermostat
regulating the interior temperature of planets [Tozer, 1967].
In situations where tidal dissipation is an important heat
source (Jupiter’s moon Io, for example), the internal tem-
perature also controls the rate of heating through the
dependence of heat production on viscosity, providing a
further feedback. Modeling the thermal evolution of such
systems requires accurate parameterizations of the temper-
ature structure and the heat fluxes within the layer.
[4] Internal heating has a significant effect beyond simply

increasing the internal temperature of the layer. By breaking
the symmetry between the upper and lower boundary layers,
internal heating leads to changes in boundary layer thick-
ness which are opposite to that predicted by the changing
boundary layer stability (as measured by the boundary layer
Rayleigh number). This reveals that there is a different
process governing heat transport through the boundary layer
in the range of Rayleigh numbers where most planetary
mantles and ice shells are found (105–108). It is shown here
that convective heat transport in this range of Ra is between
two asymptotic regimes, one dominated by thermal bound-
ary layer instability at high Ra (�109) and one dominated
by the arrival of plumes from the opposite layer at low Ra,
and that no single scaling applies. This is a significant
departure from existing theory and the implications for
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planetary thermal history modeling, as well as our under-
standing of how planets work are profound.
[5] This paper presents two-dimensional numerical calcu-

lations of convection in an isoviscous layer heated from
below and within which are used to derive scalings for the
mean internal temperature, internal temperature gradient,
boundary layer thicknesses, and basal and surface heat fluxes
as a function of the convective parameters (expressed
through the internal heating rate and the Rayleigh number).
Isoviscous models are chosen to isolate the effect of mixed-
mode heating from that of temperature-dependent viscosity.
It has been shown that, for the large temperature dependence
characteristic of planetary materials (ice and rock), the
convection is essentially isoviscous beneath a stagnant,
conductive lid [Grasset and Parmentier, 1998; Reese et al.,
1999; Solomatov and Moresi, 2000]. The extension to
temperature-dependent viscosity will be dealt with in a future
paper. The range of Rayleigh numbers chosen for this study
(104 < Ra < 108) covers the expected effective Rayleigh
numbers governing the actively convecting layer beneath the
stagnant lids of most planetary bodies.
[6] The numerical model is detailed in the next section,

followed by the development of scaling relationships for
mixed-mode convection. These relationships are discussed
in the final section. The key to understanding the behavior
of mixed-mode convection is to recognize that the basic
state (zero heating) is different when the bottom boundary
temperature is held constant than in the usual situation
where the bottom heat flux is set to zero. When the
appropriate reference temperature is used, the familiar
scalings reappear in the mixed-heating case.

2. Numerical Model

[7] The numerical experiments are performed in a 4 � 1
or 8 � 1, two-dimensional domain with reflecting side
boundaries, constant temperature upper and lower bound-
aries and varying amounts of internal heating. Within this
domain the equations of mass, momentum, and energy
conservation in an infinite Prandtl number, Boussinesq fluid
are solved numerically by finite volume discretization on a
staggered grid using STAG3D [Tackley, 1996]. For the
isoviscous cases considered here, there are two controlling
parameters. The temperature is non-dimensionalized by the
temperature difference between the top and bottom of the
layer DT*, leading to the standard bottom-heating defini-
tion of the Rayleigh number Ra:

Ra ¼ rgaDT*D3

hk
ð1Þ

where r is the density, g is the acceleration of gravity, a is
the thermal expansivity, D is the thickness of the layer, h is
the viscosity and k the thermal diffusivity. As this study
is intended to be quite general, specific values for these
quantities will not be adopted.
[8] The specific internal heating rate H* (W/kg) defines a

second dimensionless temperature scale DTH

DTH ¼ rH*D2

k
ð2Þ

where k is the thermal conductivity, and the asterisk
indicates a dimensional quantity. Although a Rayleigh
number based on this temperature scale (RaH) is typically
defined for internally heated convection, to avoid confusion
between two different Rayleigh numbers the dimensionless
heating rate H given by

H ¼ rH*D2

kDT*
; ð3Þ

which is equal to RaH/Ra is used instead [Schubert et al.,
2001]. For the remainder of this report, the dimensionless
temperature difference DT and layer depth D are set to 1,
and non-dimensional quantities will be used. All constant
non-dimensional material parameters (e.g., D, r, k) will be
given the value 1. A range of Ra from 104 to 108 and H up
to 102 was explored to quantitatively determine the
dependence of heat transport through the boundaries and
the internal temperature distribution on the controlling
parameters.
[9] The time evolution of the system uses the MPDATA

scheme of Smolarkiewicz [1984], and the time step is
limited by the Courant condition. The calculations presented
here use a 256 � 64 grid at Ra < 107, and twice that
resolution for the higher Ra cases. All cases were run to
statistical steady state, and then at least an equal amount of
time beyond. Properties were time averaged over this
period. Certain low-Ra cases require wider domains than
4 � 1 because these weakly convecting cases have steady or
nearly-steady solutions with fixed aspect-ratio cells. If an
integer number of the steady cells is not compatible with the
fixed-width domain, spurious time-dependence is intro-
duced as the number of cells oscillates about the preferred
non-integer value. This affects the Nusselt numbers and the
mean temperature [Grigne et al., 2005]. An 8 � 1 domain
(and in two cases a 16 � 1 domain was tested) is used when
such quasi-steady behavior is observed, which reduces the
problem.

3. Results

[10] For thermal history calculations, the heat flow
through the boundaries of the layer is required as a function
of the convective parameters Ra and H. The heat flow out of
the top of the layer is typically represented by the Nusselt
number Nutop

Nutop ¼
dT

dz

����
z¼1

¼ H þ Nubot ¼ H þ dT

dz

����
z¼0

ð4Þ

where Nubot is the non-dimensional bottom boundary heat
flux. An approximation to the horizontally averaged
temperature profile in the layer is also necessary for the
purposes of comparing with observations and, in cases
where tidal heating may be important, for calculating the
viscosity-dependent heating.
[11] First, we review the end-member heating cases (for a

thorough discussion see Schubert et al. [2001]). Figure 1
shows the horizontally and time-averaged temperature pro-
files of three calculations at Ra = 105: bottom-heated (H = 0),
internally heated (H = 10), and mixed heating (H = 10).
[12] A layer heated from below by maintenance of a fixed

temperature difference between the upper and lower bound-
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aries results in a temperature structure with two boundary
layers separated by an isothermal (or adiabatic if the
material is compressible) core. The temperature in the core
is the average of the two boundary temperatures, and the
temperature drop across each boundary layer is half the
total. As convective vigor increases, the boundary layers
must thin in order to carry more heat, since the temperature
drop is fixed. At equilibrium, the two layers must transport
the same amount of heat and therefore have the same
average thickness. This thickness is determined by the
criterion for convective stability of the boundary layer, that
is, the boundary layer will thicken until the Rayleigh
number (calculated for the boundary layer alone) exceeds
a critical value and it becomes unstable and detaches. The
(non-dimensional) critical boundary layer thickness d scales
with the Rayleigh number according to: d � Ra�1/3, thus the
heat flow through each boundary scales as: Nu � Ra1/3.
[13] A layer heated from within with no heat flux from

below has only a single boundary layer at the top. At
equilibrium, this boundary layer must carry all of the heat
generated in the layer (proportional to H). The boundary
layer thickness is controlled by the stability criterion as
above, so the interior temperature adjusts until the heat
production is balanced by heat flow across the layer. The
resulting temperature difference across the boundary layer
scales as Ra�1/4H3/4 (or RaH

�1/4 H). When this temperature
drop is factored into the stability criterion for the boundary
layer, the boundary layer thickness is found to scale as
(RaH)�1/4.
[14] Here we seek a parameterization for the heat flow

and temperature structure within a layer with mixed heating.
The results of 49 two-dimensional calculations are summa-
rized in Table 1. The heat flow at the boundaries is directly
computed from the output temperature field. The tempera-
ture structure is computed from horizontal and time aver-
ages of the temperature field. We divide the domain into two

(often unequal) boundary layers and a typically subadiabatic
interior. The parameterizations are all derived from linear
regressions to the data in table datatable. Rather than report
formal errors on the coefficients, which are not very
meaningful in the absence of good error estimates for the
measured quantities, the average fractional misfits, calcu-
lated as h(measured - model)/modeli, will be reported. All
derived parameter values will be given to out to the most
significant digit of the formal error.
[15] There are two typical ways to approach defining the

thermal boundary layers. The first is to treat the boundary
layer as a region in which the process of conduction
dominates and to consider the transient growth of the
conductive boundary layer toward instability. The second,
simpler approach is to consider the layer as a region across
which a steady heat flow is conducted. In both cases the
heat flow is inversely proportional to the boundary layer
thickness. The difference is that the actual temperature
structure of the boundary layer is more closely approximated
by a transient, rather than a steady conduction profile, as is
evident from the curvature of the temperature profiles in
Figure 1. For developing a simple parameterization for use
in thermal history modeling, however, the steady-state
boundary layer is sufficient.

4. Interior Temperature

[16] As mentioned above and discussed in more detail
below, the interior temperature is not constant with height in
the presence of internal heating, rather, the interior is
subadiabatic. We parameterize the temperature in the inte-
rior using a linear fit to the horizontally and time-averaged
profile over the vertical interval between 0.3 and 0.7 dimen-
sionless height (shown in gray in Figure 1). This fit is used to
specify the interior temperature Ti, which is the value of the fit
at mid-depth, and the interior temperature gradient. The

Figure 1. Horizontally and time-averaged temperature for three cases with Ra = 105: bottom-heated
(H = 0), internally heated (H = 10), and mixed heating (H = 10, mixed). The interior temperature and
gradient are determined from a linear fit (dotted) over the gray region (0.3 � z � 0.7). The boundary
layer properties are determined from the intersection of this line, with the gradient extrapolated from
each surface (dashed), as shown for the bottom-heated case.
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steady-state boundary layer thickness and temperature are
determined by finding the point at which a constant gradient
temperature profile that matches the boundary heat flow
(dashed in Figure 1) extended inward from the boundary
intersects the interior temperature fit (dotted in Figure 1). It
should be remembered that this is an effective boundary layer
only, and that this structure is not realized at any point within
the domain. For low Ra, when the boundary layer can be
quite thick, the fit to the internal gradient can become
contaminated by the influence of the boundary layers. All
of the parameter fits presented therefore exclude the models
with Ra below 105, although these models are shown in the
plots.
[17] The addition of internal heat to a basally heated layer

breaks the symmetry of the boundary layers, since now the
upper boundary must transport the heat coming through the
bottom as well as the heat produced internally, that is,

Nutop = Nubot + H. This extra heat is transported by an
increase in the internal temperature which increases the
temperature drop across the upper boundary layer, exactly
like the purely internally heated case. The difference in the
mixed case is that the internal temperature increase caused
by internal heating is over and above the bottom-heated
temperature profile. Thus, when the internal temperature Ti
is referenced to that produced by the bottom-heated case
(the mean of the top and bottom temperatures which is 0.5
in non-dimensional values), the typical internally heated
scaling is recovered:

Ti ¼ 0:49þ 1:24H3=4Ra�1=4 ð5Þ

as shown in Figure 2 and compiled in Table 2. The average
misfit is less than 2%. Note that only those models in which
heat is transported from below (Nubot > 0) are included in
these fits, as well as the subsequent fits for the boundary

Table 1. Convection Simulation Results

Ra H Nubot dbot Tbot Nutop dtop Ttop Ti

104 0 4.88013 0.115536 0.436171 4.88013 0.115339 0.562869 0.499504
100 4.36535 0.118729 0.481704 6.82451 0.089242 0.609033 0.542998
3 � 100 2.87828 0.117045 0.663113 5.87802 0.146526 0.861284 0.766165
101 �0.797778 0.263661 1.21034 9.20196 0.166386 1.53108 1.34334
3 � 101 �7.86706 0.111877 1.88014 22.1058 0.121403 2.68371 2.28692
102 �29.0054 0.119402 4.4633 71.0968 0.0947465 6.73617 5.56408

3 � 104 0 6.88342 0.0778453 0.464158 6.88348 0.0776299 0.534364 0.499252
105 0 8.53894 0.0624905 0.466397 8.56196 0.0625618 0.535652 0.501027

100 8.00397 0.0602742 0.517567 9.01151 0.0650723 0.5864 0.552172
3 � 100 6.69498 0.0598748 0.599139 9.73759 0.0730488 0.711319 0.656081
101 3.11074 0.0428524 0.866697 13.1306 0.0783247 1.02845 0.950838
3 � 101 �4.17425 0.0727919 1.30385 25.6824 0.0626268 1.60841 1.45434
102 �20.7691 0.0947651 2.96819 79.1309 0.0469224 3.71301 3.31984

3 � 105 0 11.661 0.0438859 0.488247 11.6536 0.0449236 0.523522 0.505905
100 11.1465 0.043266 0.517736 12.1784 0.0456407 0.555831 0.536833
3 � 100 10.4449 0.0405823 0.576122 13.4344 0.0469146 0.63027 0.603384
101 6.70087 0.0364985 0.755428 16.4309 0.0503325 0.827008 0.79176
3 � 101 �1.00117 0.0584188 1.05849 26.7924 0.0463915 1.24294 1.14947
102 �14.1295 0.076053 2.07459 66.2982 0.0376619 2.49692 2.27661

106 0 16.938 0.0297927 0.495372 16.7821 0.0307597 0.516212 0.505803
100 16.713 0.0283076 0.526896 17.7681 0.0302096 0.536768 0.531842
3 � 100 16.4312 0.0256868 0.577935 19.4992 0.0303414 0.591633 0.584818
101 11.8951 0.0270186 0.678611 21.9567 0.0330386 0.725419 0.702165
3 � 101 2.42383 0.0248622 0.939738 32.3851 0.0320493 1.03792 0.989203
102 �13.6364 0.0671144 1.9152 86.2769 0.0256279 2.21109 2.05638

3 � 106 0 27.8117 0.0182509 0.492413 28.0179 0.0176424 0.494303 0.494041
100 24.7895 0.0193116 0.521275 25.9999 0.0202719 0.527068 0.524174
3 � 100 22.6073 0.0196719 0.555272 25.8736 0.0218362 0.564981 0.560138
101 18.3497 0.0204737 0.624315 28.5259 0.0227519 0.64902 0.636697
3 � 101 8.59345 0.0209849 0.819668 37.7514 0.0231851 0.875268 0.847532
102 �8.84635 0.0511532 1.45252 80.6629 0.0202552 1.63385 1.54017

107 0 33.3108 0.0151875 0.494093 33.3495 0.0150215 0.500959 0.497525
100 32.5224 0.0152322 0.504612 33.7392 0.0151245 0.510288 0.50745
3 � 100 32.0459 0.0142584 0.543077 34.7455 0.0157506 0.547263 0.545173
101 26.8922 0.0151898 0.591513 36.9556 0.0165672 0.612252 0.601897
3 � 101 16.3144 0.0157902 0.742393 46.3148 0.0168692 0.781293 0.761865
102 �5.12413 0.038766 1.19864 94.8921 0.0139892 1.32746 1.26137

3 � 107 0 49.4404 0.0103011 0.490711 50.0709 0.00985667 0.493532 0.492121
100 48.2888 0.0102927 0.50298 49.8821 0.0101626 0.50693 0.504954
3 � 100 48.0705 0.00957881 0.539542 51.6567 0.0105317 0.544034 0.54179
101 42.0235 0.0101165 0.57487 52.6616 0.0110564 0.582247 0.578562
3 � 101 30.4841 0.0108519 0.66919 60.7095 0.011397 0.691905 0.680554
102 3.77893 0.00520358 0.980336 99.0586 0.0106469 1.05467 1.01771

108 0 66.975 0.00751477 0.496698 67.434 0.00742489 0.50069 0.498694
100 65.8306 0.00740138 0.512763 68.1512 0.00756854 0.515805 0.514284
3 � 100 63.8088 0.00745265 0.524455 68.4807 0.00771879 0.528588 0.526522
101 59.623 0.00741668 0.557795 70.2319 0.0079959 0.561567 0.559682
3 � 101 47.5037 0.00775871 0.631433 77.6329 0.00828017 0.642813 0.637126
102 15.4059 0.00794346 0.877624 115.377 0.00798007 0.920717 0.899171
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layer temperature drops. A slightly better fit is found by
allowing the exponents to vary from the internally heated
scaling, but the difference is small. This scaling is
essentially identical to that (0.5 + 1.236H3/4 Ra�1/4) found
by Sotin and Labrosse [1999] in their study of this problem.

5. Boundary Layer Temperature Drops

[18] The temperature drop across each boundary layer is
shown in Figure 3 as a function of H3/4 Ra�1/4. Note the
divergence from the symmetrical boundary layers at H = 0.
The temperature drops scale similarly to the internal tem-
perature, with the upper boundary temperature drop increas-
ing and the lower boundary temperature drop decreasing.
The best fit scalings for the upper and lower boundary layer
temperature drops are:

DTtop ¼ 0:499þ 1:33 H3=4Ra�1=4 ð6Þ

DTbot ¼ 0:514� 1:13 H3=4 Ra�1=4 ð7Þ

The average misfits are less than 3% for the upper boundary
layer and less than 5% for the lower boundary layer. This
scaling follows the interior temperature scaling, which
shows that the additional heat coming from internal heating
is being transported through the boundary layer in the same
way it would without there being any heat from below.
[19] The fact that the sum of the top and bottom temper-

ature drops exceeds the total temperature drop across the
system (1 in dimensionless units), a discrepancy which
increases with H, is due to an aspect of internally heated
convection that has not been quantitatively analyzed to date.
The interior of an internally heated layer tends to have a
subadiabatic gradient, that is, the bottom of the layer is
somewhat colder than the top, as shown in Figure 1. The
interior gradient is measured from a straight line fit to the
averaged temperature profile as described above. This
gradient occurs in internally heated fluid layers because
the fluid upwells passively in response to detachment of the
upper boundary layer. In mixed heating cases, this passive

flow balances the excess input to the lower boundary layer
from the more active upper layer. As fluid moves upward in
the layer, the internal heating is gradually increasing the
temperature. The temperature gradient dT/dz is thus pro-
portional to the heating rate (dT/dt) and inversely propor-
tional to the upwelling velocity (dz/dt). The upwelling
velocity scales as RaH

1/2 [Turcotte and Schubert, 2001], thus
the subadiabatic gradient scales as RaH

�1/2H or (H/Ra)�1/2,
as shown in Figure 4. The relationship holds for mixed
heating cases as well (although there is more scatter).
The best-fit scaling for both mixed and internally heated
cases is shown by the solid line and is given by dT/dz =
23 (H/Ra)�0.52, which is very close to the theoretical
scaling. The fit is much better for the purely internally
heated cases (12% average misfit) than the mixed heating
cases (29% average misfit), suggesting that mixing driven
by the passage of hot and cold plumes through the interior
affects the passive upwelling.

6. Boundary Layer Thickness

[20] We now seek a scaling for the boundary layer
thickness as a function of Ra and H. It is typically assumed
(and is implicit in the discussion of the end-member cases

Table 2. Heat Flow and Temperature Structure Scalings

Value Scaling Mean Error (%)

Top Boundary Layer
DTtop 0.499 + 1.33 H3/4Ra�1/4 2.3
Nutop 0.5H + 0.206 (Ra�Rac)

0.318 5.2
dtop use DTtop/Nutop 5.2

Interior
Ti 0.492 + 1.24 H3/4Ra�1/4 1.5
dT/dz 23 (H/Ra)0.52 29

Bottom Boundary Layer
DTbot 0.514 – 1.13 H3/4Ra�1/4 4.6
Nubot �0.5H + 0.206 (Ra�Rac)

0.318 5.4
dbot use DTbot/Nubot 10

Figure 2. Interior temperature Ti vs. H
3/4Ra�1/4. The solid line shown is the fitting function which is

given in (5).
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above) that the boundary layer thickness is set by a stability
criterion of the form Rab = Rac [Howard, 1966], where the
critical Rayleigh number Rac is a constant depending on
boundary conditions, and the boundary layer Rayleigh
number Rab is defined as

Rab ¼
rgaDTbd3

hk
; ð8Þ

where DTb is the temperature drop across the boundary
layer and d is the boundary layer thickness. For bottom-
heated cases, DTb is DT/2 and the dimensionless boundary
layer thickness (d/D) is seen to scale as (Ra/Rac)

�1/3. In the

mixed heating case, DTb is not constant, but the stability
criterion predicts the following relationship:

d ¼ Ra

Rac

DTb

DT

� ��1=3

ð9Þ

which is plotted for the both boundary layers in Figure 5
(mixed heating cases with Ra = 3 � 105, 3 � 106, and 3 �
107 have been omitted for clarity but are included in the
fits).
[21] The boundary layer thickness for the bottom-heated

cases (solid symbols) follows a power-law with Rab, and a
fit to these for Ra � 105 is shown as a solid line. The best-fit
exponent is �0.303, which is significantly lower than the

Figure 3. Temperature drop across the upper boundary layer (triangles) and the lower boundary layer
(inverted triangles) vs. H3/4Ra�1/4. The solid lines are the fitting functions given in (6) and (7) for the
upper and lower boundary layers, respectively.

Figure 4. The subadiabatic temperature gradient in the interior of layers with pure internal (open
symbols) and mixed heating (solid symbols) vs. H/Ra. The slope is 0.52, very close to the predicted
scaling.
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predicted �1/3. The addition of internal heating, however,
results in a divergence in the thicknesses of the boundary
layers that is not accounted for by the changing temperature
drop across the layer according to (9). Indeed, the response
of the boundary layers is opposite to that expected based on
the change in the local boundary layer Rayleigh number.
The upper boundary layer, which has seen its temperature
contrast and Rayleigh number increase, thickens, while the
lower boundary layer, which has seen a decrease in the
temperature contrast, thins. The departure from the pre-
dicted scaling increases with H and decreases with Ra.
More specifically, the boundary layer thickness scaling with
Rab approaches the theoretical �1/3 scaling as H increases.
A fit (dotted line) to the upper boundary layer thickness for
cases with negative bottom Nusselt number (i.e., no bottom
boundary layer) results in a best fit exponent of �0.335.
Thus the departure of the boundary layer thickness scaling
from that predicted by boundary layer stability seems to be
due to the presence of flow (plumes) driven by processes at
the other boundary.

7. Boundary Heat Flux

[22] Rather than attempt to directly determine the scaling
for the boundary layer thicknesses by deriving a new
scaling, it is simpler to determine the scaling for the heat
flux across the boundaries, and thus to infer the scaling for
the boundary layer thicknesses using the relationship:
DTbot/Nubot. The advantage in this case is a clear knowl-
edge of the end-member scalings at zero and large H. Since
we have the additional constraint that Nutop = Nubot + H, we
can fit a single function for the heat flux at both boundaries
simultaneously. It is expected that the scaling for the heat
flow through the lower boundary changes when Nubot
becomes negative, therefore such cases will not be used to
derive the scaling.

[23] According to the previous discussion, the boundary
heat flux at H = 0 should scale as Ra1/3 at large Ra. At low
Ra, however, the Nusselt number should equal 1 at the
critical Rayleigh number Rac, and therefore the scaling
relationship should have the form:

Nu� 1ð Þ � Ra� Racð Þb: ð10Þ

These constant offsets are typically ignored under the
assumption that they are negligible for the large Rayleigh
numbers that apply to planets, however, the effective
Rayleigh number in planets is much lower than that implied
by the total temperature drop, because the rigid lid (in all
cases except Earth) absorbs most of the temperature change
without participating in convection [Solomatov, 1995]. We
will therefore use (10) to fit the heat flow results. The
precise value of Rac is uncertain for mixed heating cases.
For bottom-heated cases, Rac is 658 from linear stability
analysis [Schubert et al., 2001], but it turns out that the fits
are quite insensitive to the actual value (Ra�Rac is much
larger than Nu-1) so this value will be adopted for all fits.
[24] The scaling found from the bottom-heated cases is

(Nu � 1) � (Ra � Rac)
0.318. The slightly lower than

expected exponent is typical of numerical simulations of
convection, especially in this range of Ra [Christensen,
1989]. At large H, the heat flux should scale linearly with
the internal heating as in purely internally heated cases (the
coefficient should approach 0.5 in this case as half the heat
will escape through the bottom of the layer). Noting that the
internal temperature seems to be the sum of the temperature
set by the average of the boundaries and the temperature
required to remove the internally generated heat (5), let us
simply assume that the internally generated heat adds
linearly to the heat transported by the temperature difference
between the two boundaries (this assumption will be revis-

Figure 5. Boundary layer thickness d vs. boundary layer Rayleigh number Rab = RaDTb. The solid line
is a fit to the bottom-heated cases (solid symbols), and the dotted line is a fit to the mixed heating cases in
which the bottom boundary Nusselt number is negative (cases with Ra < 105 have been excluded from
the fits). The mixed heating cases with Ra = 3 � 105, 3 � 106, and 3 � 107 have been omitted for clarity
but are included in the fits. The bottom-heated, 1 � 1 box calculations of Lenardic and Moresi [2003]
have been included (circles) for comparison.
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ited in the discussion section). We therefore arrive at the
following scaling for the heat flux through the boundaries:

Nutop � 1
� �

¼ Nubot � 1ð Þ þ H

¼ 0:5H þ 0:206 Ra� Racð Þ0:318; ð11Þ

which is shown in Figure 6. The quality of the fit for Ra �
105 is excellent, with average errors of 3% for (Nutop � 1)
and (Nubot � 1 + H). This fit is significantly improved
(nearly a factor of two decrease in the average misfit) over a
fit which does not include the Nusselt number offset (Nu vs.
Nu � 1), but the influence of the critical Rayleigh number is
small, as found for the bottom-heated cases. The coefficient
for H in (11) is not well constrained by fitting (a value of

0.6 ± 0.1 was found) so the expected asymptotic value of
0.5 was adopted, with little change to the quality of the fit.
As expected, this relationship does not predict Nubot well
when it is negative.
[25] Returning to boundary layer thickness, the predicted

scaling for dtop is now

dtop ¼
DTtop

Nutop
¼ 0:499þ 1:33 H3=4Ra�1=4

0:5 H þ 0:206 Ra� Racð Þ0:318
; ð12Þ

and the predicted bottom boundary layer thickness is

dbot ¼
DTbot

Nubot
¼ 0:514� 1:13H3=4Ra�1=4

�0:5H þ 0:206 Ra� Racð Þ0:318
: ð13Þ

Figure 7. Top and bottom boundary layer thicknesses vs. predicted scalings from (12) and (13),
respectively. The solid line shows where the measured values equal the predicted.

Figure 6. Measured vs. predicted Nusselt numbers at the upper boundary layer (triangles) and lower
boundary layer (plus H, inverted triangles) for mixed (open symbols) and bottom heating cases (solid
symbols). The solid line shows where the measured values equal those predicted by the model 0.5H +
0.206 (Ra � Rac)

0.318.
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The predicted scaling is shown vs. the measured dtop and
dbot in Figure 7. The fit is quite good, especially for Ra �
105 (d � 0.07), with average errors of 5% for dtop and 10%
for dbot in this range of Ra. This scaling behaves as expected
at the extreme values of H. For H = 0, d scales as Ra�0.318

and for large H, d scales as RaH
�1/4. Importantly, one can see

from Figure 7 that the trend as H increases (upper boundary
layer thickens and lower boundary layer thins) is well
predicted for both boundary layers.
[26] The predicted boundary layer thicknesses are not as

accurate for the lower boundary layer as for the upper
boundary layer, and there are several anomalous points
which correspond to extremely weak bottom boundary
layers, as Nubot approaches zero. A curious aspect of layers
with mixed heating is that the heat flow through the bottom
boundary can become negative if the internal temperature
becomes too large. The point at which Nubot = 0 corre-
sponds to a purely internally heated case (though with a
different boundary condition). The scaling for DTbot pre-
dicts that for H > 0.35Ra1/3, heat will flow out of the bottom
boundary, while the scaling for Nubot predicts the transition
to occur for H > 2 + 0.412Ra0.318. Both scalings are
essentially indistinguishable and match the numerical sol-
utions as shown in Figure 8.

8. Discussion

[27] Scalings for the heat flow at the boundaries and the
temperature structure of convecting layers heated from
within and below have been determined (Table 2). The
internal temperature and boundary layer temperature drops
scale in a way that is similar to the internally heated case,
but with an offset that reflects the underlying temperature
structure of bottom-heated convection. The surface heat flux
scales similarly as a simple addition of the internally
generated heat to that transported by the temperature dif-
ference between the boundaries. Deriving boundary layer
thicknesses from the scalings for heat flux and boundary

layer temperature drop provides an excellent fit to the model
results.
[28] The mixed heating cases have revealed a previously

noted [e.g., Christensen, 1989; Lenardic and Moresi, 2003]
but unexplained departure of bottom-heated convection
from the scaling predicted by boundary layer stability
theory. It should be emphasized that Howard’s [1966]
theory was developed as asymptotic for high Ra, and
Lenardic and Moresi [2003] have shown that the scaling
exponent does not converge toward �1/3 until Ra exceeds
about 109 (circles in Figure 5). Indeed, it appears that at low
Ra, the Nusselt number (which is inversely proportional to
d) asymptotically approaches a constant value [Lenardic
and Moresi, 2003, Figure 6], with no dependence on Ra.
This asymptotic behavior is removed by fitting to a relation-
ship of the form of (10), revealing that at low Ra, or more
precisely low Ra � Rac, the Nusselt number approaches 1.
Thus, while it may be surprising that the effect of finite heat
transport in the conduction regime is still noticeable at
Rayleigh numbers more than 105 times critical, the Nusselt
number is only about 30 at Ra = 108, and the effect of using
Nu rather than Nu � 1 is to bias any derived scaling toward
a lower exponent, an effect that strengthens as the lowest Ra
employed decreases.
[29] The observation that the internal temperature increase

scales in exactly the same way as for purely internally
heated cases and that the heat flux at the surface is simply a
sum of internal production and boundary heat transport
suggests that there are two parallel heat transport modes
operating in the layer. The only way to accomplish this is if
there are different processes operating simultaneously in
different parts of the boundary layer. That is, there is no
single global description of the dynamics of the boundary
layer in the mixed heat case. Instead, there must be two
different types of dynamics operating over different portions
of the boundary.
[30] The implications of this go beyond heat transport in

layers with mixed heating. The textbook descriptions of the

Figure 8. Cases for which Nubot is positive (triangles) and negative (inverse triangles) as a function of
Ra and H. The dashed line is the predicted Nubot = 0 boundary from (7), and the dotted line is derived
from (11).

B11407 MOORE: CONVECTION HEATED FROM WITHIN AND BELOW

9 of 11

B11407



behavior of the boundary layer in the bottom and internally
heated cases (see discussion above and Turcotte and Schubert
[2001]) both invoke the instability of a fluid sublayer, which
is modified in the case of internal heating to account for the
varying internal temperature. However, how can the dynam-
ics of the boundary layer be localized if the same instability
mechanism is operating everywhere? Other than having large
horizontal gradients in temperature across the domain, which
is not observed, there is no way to alter the stability of the
sublayer from place to place. The answer is that there are two
different instability mechanisms operating in the boundary
layer.
[31] For a purely internally heated fluid, it is difficult to

imagine what else could control the dynamics of the
boundary layer other than the local stability of the sublayer.
The theory fits the observations (both laboratory and
numerical) very well. In Figure 5, the convergence of the
boundary layer thickness to that predicted by stability
theory occurs as the system becomes more dominated by
internal heating. In the case of bottom-heated convection,
however, there is an obvious and, most importantly, local-
ized process that modifies the behavior of the boundary
layer: the arrival of plumes from the other boundary. The
results presented here suggest that boundary layer stability
analysis, though generally considered successful, is not an
accurate description of the processes controlling boundary
layer thickness at these Rayleigh numbers because the effect
of plumes arriving from the other boundary layer is ignored.
[32] By examining a layer with mixed heating that creates

asymmetric boundary layers, we see that the arrival of
plumes alters the thickness of the boundary layer, for
example, the bottom boundary layer in the mixed heating
cases, which thins as excess plumes arrive from the upper
boundary layer (Figure 5). Only in the case when there is
only a single boundary layer (purely internally heated
convection) is the boundary able to evolve to the stability
limit. Otherwise, the boundary is destabilized by the arrival
of plumes that create unstable piles of material between
them (as noted by Labrosse [2002]). This effect apparently
dominates at the Rayleigh numbers investigated here, and is
most likely responsible for the consistently low exponents
(relative to 1/3) found in the Nu � Ra relationship. This is
likely also responsible for the failure of an averaged
boundary layer thickening profile to fit the averaged tem-
perature structure [Parmentier and Sotin, 2000]. At very
high Rayleigh number (the ‘‘hard-turbulent’’ regime of
Hansen et al. [1990]), when the plumes dissipate all of
their buoyancy in traversing the interior, their ability to
influence the other boundary layer diminishes.
[33] The scalings derived here have several implications

for thermal history models. The efficiency of heat transport
through the bottom boundary given by (11) depends on two
competing terms, one dependent on Ra, and the other
dependent on H. As H decreases or Ra increases, the bottom
heat flux increases. The long-term evolution of planetary
mantles generally sees Ra decrease along with H. Since
these two effects offset, the flux out of the underlying layer
may be relatively constant over time. If the underlying layer
cools off sufficiently rapidly (that is, it has a low heat
capacity), Ra decreases while H changes little and the heat
flow out of the layer drops. Thus the cooling of the
underlying layer is locked to the rate at which H decreases.

[34] The Nubot = 0 condition is an interesting variant on
the purely internally heated case. Rather than an insulating
boundary condition, which enforces zero heat flux every-
where, the condition is one of zero net flux, a far more
realistic description of a passive internal layer. Such cases
obey the relationship H = 0.35Ra1/3 which implies that the
equilibrium temperature drop across an internally heated
layer overlying a passive heat sink scales as H3. Taking the
scaling for the non-dimensional temperature drop across a
purely internally heated layer DTi = 4.91 DTHRaH

�1/4

[Turcotte and Schubert, 2001, equations (6–345)] and
setting it equal to the temperature difference between the
boundaries in the mixed case (DT) leads to the very similar
expression H = 0.15Ra1/3. Evidently, since the bottom
boundary layer isn’t actually involved in the convection,
the flow is insensitive to the actual boundary condition, and
the zero flux condition is appropriate for modeling such
systems.
[35] These scalings will be extended to temperature-

dependent viscosity fluids and spherical shells in future
papers. Temperature-dependent viscosity acts to restrict the
temperature drop across the actively convecting region to a
few times the rheological temperature scale @ln(h)/@T [Yuen
and Fleitout, 1984; Davaille and Jaupart, 1993]. Within
this layer, the convection is in the small viscosity contrast
regime. With a fixed temperature drop, Ra can only adjust
by changing the internal temperature which adjusts the
viscosity. By balancing the heat flux at the top of the
convecting layer with the solution for conduction through
the rigid lid, the lid thickness and the temperature structure
of the layer may be determined [Reese et al., 2005].
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