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N U M E R I C A L  I N T E G R A T I O N  OF T H E  E Q U A T I O N  OF M O T I O N  F O R  

S U R F A C E  W A V E S  I N  A M E D I U M  W I T H  A R B I T R A R Y  

V A R I A T I O N  OF M A T E R I A L  C O N S T A N T S  

By  YAsvo SAT5 

ABSTRACT 

The calculation of surface-wave dispersion is difficult when the waves propagate in media whose 
physical properties change with depth, and only a few solutions are available for fairly simple cases. 

These computations may now be performed with the aid of high-speed computers, even for media 
whose material constants change arbitrarily with depth. The dispersion of both Love waves and 
Rayleigh waves has been obtained for such cases by the numerical specification of surface displace- 
ment followed by numerical solution of the equations of motion. 

For example, with respect to the problem of Love waves, besides the ordinary boundary condi- 
tion that the stress vanishes at the free surface, an extra condition is stated which requires that 
the displacement amplitude be unity at the surface. The equation of motion is then solved numeri- 
cally for tentative values of frequency and wave number, and this solution produces the distribution 
of displacement amplitude in the half space. For all combinations of frequency and wave number 
which are not solutions, the values of computed displacement do not converge and tend to become 
positively or negatively infinite for increasing depth below the free surface. To obtain a solution, 
one of the parameters--for instance, wave number--is fixed, and frequency is varied in small 
steps until the computed displacement converges to zero at great depths. This combination of 
parameters fulfills all the standard boundary conditions and is the required solution. The problem 
of sound waves in an elastic liquid can also be solved with only a minor change in the physical 
properties. 

The dispersion of Rayleigh waves propagating in a heterogeneous substance can also be obtained 
by a similar method. In this case, another parameter is needed, namely, the ratio of the amplitude 
of horizontal and vertical components of displacement at the free surface. Denote this quantity 
by a, and the phase velocity by c. Wave number is fixed, and a two-dimensional search in the a - c  

plane is used to locate the point that produces a convergent solution. For limited media a solution 
is required which satisfies the boundary conditions at the other surface. 

After testing the method by applying it to cases which had been solved analytically, a few 
problems were solved. These include: 

1) Love waves in a medium with constant density and linearly increasing rigidity. 
2) Sound waves in a medium whose density and velocity are given by experimental curves. 
3) Rayleigh waves in a medium having constant density and equal rates of increase for X and ~. 

Using an IBM "650," it takes a few minutes to get a point for cases 1 and 2, and from thirty 
minutes to two hours per point for Rayleigh-wave dispersion. 

Introduction 

D e t e r m i n a t i o n  of the veloci ty  of p ropaga t ion  is one of the mos t  in te res t ing  as 

well as i m p o r t a n t  problems in  the  s tudy  of the p ropaga t ion  of surface waves. W h e n  

the  m e d i u m  consists of one or two homogeneous  mater ia l s  wi th  layered s t ructure ,  
i t  is no t  difficult to calculate  the  dispersion curve. Today ,  by  the use of electronic 

comput ing  machines,  i t  has become possible for us to assume a large n u m b e r  of 
layers, every  one of which is homogeneous}  

Manuscript received for publication September 1, 1958. 
This study was carried out at the Lamont Geological Observatory of Columbia University, and 
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[57]  



58 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 

If the material is heterogeneous, however, the analytical method of solution be- 
comes very difficult. The dispersion curve has been computed for certain structures 
having relatively simple variation of material properties, 2 and various methods of 
approximation have been suggested, a but  not without restrictions such as the con- 
tinuous increase of the body-wave velocity. 

The numerical method presented here has no restrictions in the distribution of 
the material. The problem is assumed to be two-dimensional. 

1. Simple Love waves 

First, we shall consider a simple problem of Love waves, which can be easily 
solved analytically. 

The horizontal displacement v perpendicular to the x - z  plane satisfies the differ- 
ential equation 

1 02V 
V~V - (1.1) 

where cs is the velocity of S waves. 
Assuming the form of solution 

Cn 2 0t 2 

v = V(z)  exp (ipt  - i fx)  (1.2) 

substitute into the foregoing equation. The equation for V(z)  becomes 

d2V 
dz 2 + (p2/cs2 - f f )V = 0 (1.3) 

The solution is given by  

V(z)  = A cos~z + B sin fiz 

= 

(1.4) 

Similarly in the half space the differential equation for the displacement v' is 

1 O~v ' 
V2v ' - cs ,20t  2 (1.5) 

and the function V' ( z ) ,  which gives the vertical distribution of the amplitude, 
satisfies the equation 

dz 2 f f  - V '  = 0 (1.6) 

where cs' implies the shear velocity in the half space. 

-" Cf. M. Ewing, W. Jardetzky, and F. Press, Elastic Waves in Layered Media (New York: 
McGraw-Hill, 1957), chap. vii. 

3 E.g., H. Jeffreys, Proc. London Math. Soc., 23:428-436 (1923); C. L. Pekeris, Physics, 6: 133- 
138 (1935); M. Newlands, Mon. Not. Roy. Astron. Soc., Geophys. Suppl., 6:109-125 (1950); T. 
Takahashi, Bull. Earthq. Res. Inst., Tokyo Univ., 33:287-296 (1955), and 35:297-308 (1957). 
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The solution of this equation is 

V'(z) = A '  exp (5'z) q - B '  exp ( -5 ' z )  

e ,  = x/ : f2  - p2/c, ,= 
(1.7) 

The condition at the free surface z = - H  is 

~V 
Py" = "gzz = 0 (1.8) 

at the surface of separation of two media z = 0, 

p y z  ~ p y Z  r 

and (1.9) 
V = V  t 

In addition to these conditions we usually assume that  v' vanishes at  z = ~ .  In 
place of this last condition, here we will instead assume that  the amplitude is C at 
the free surface, that  is, 

A cos #H - B sin f~H = C (1.10) 

By means of these four equations (1.8), (1.9), and (1.10) we can determine the four 
quantities A, B and A', B'. 

Omitting A and B, which are not necessary now, we will give the expressions for 
A' and B'. A'  must be zero in order to get a convergent solution at  z = ~o. 

/A'=C(cos g- " #H)/2 tt,~--- 7 sm 

< 
~ #  • 

(1.11) 

If we put A'  equal to zero, we have the ordinary characteristic equation for Love 
waves; or, in other words, this equation is the condition that  the displacement 
vanishes at z = co. If, however, this relation does not hold, the term A'  exp (/~'z) 
goes to q-oo or - ~o according to the sign of A. Only the proper combination of p and 
f makes A'  zero and the solution convergent. 

Suppose we solve the differential equations (1.3) and (1.6) numerically, starting 
from the free surface under the conditions (1.8), (1.9), and (1.10). In this case we 
must tentatively give the values of p and f in order to start  a numerical solution. 
Generally they do not provide a correct answer and the solution will not be con- 
vergent. However, if we fix f and change p by small steps (or fix p and change f), 
we shall finally get to the right value of p (or f), which gives the convergent solution 
of the differential equation in the half space. The ratio p / f  gives the phase velocity, 
and the integrated curve of the equation gives the distribution of the amplitude. 

F igure  1 shows an example of the calculation and illustrates how the distribution 
of the amplitude changes with the various Combinations of p and f. 
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2. Love waves in a heterogeneous medium 
Even if the medium contains no layers, surface waves of the Love-wave type can 

exist under certain conditions. 4 

The fundamental equation for this case is, since the x and z components of dis- 
placement are missing, 

P o t ~ -  ox ~ + ~z ~'Tz (2.1) 

.~'6u= 2, 

c/cs=1.25 

/ 
/ 

t C - cs /  s-4/3 ,  ~¢=1.3876 

c/cs=l.20 c/cs=l.17 

/ / 

A~: -.1162 0 .1264 
B'" .6613 .6055 .5590  

Fig. 1. W h e n / / t *  = 2, c,s'/cs = 4/3, corresponding to 
= 1.3876, we have c/ca = 1.20 as the root of the char- 

acteristic equation for Love waves. That  means A '  in 
(1.11) becomes zero for this value of c/as and the solu- 
tion of the differential equation (1.6) converges to zero 
(middle figure). However, if c / c s =  1.23, A '  becomes 
negative and the solution of the differential equation di- 
verges to - co (left figure), while if c/cs = 1.17, A '  is 
positive and the curve goes to + ~o (right figure). 

I f  tt is a f u n c t i o n  of z only ,  (2.1) b e c o m e s  

Oev p ~ = ~ v 2 v + - - - -  

I f  we  a s s u m e  t h a t  

d# Ov 

dz Oz 
(2.2) 

v = Vo (z) exp  ( ip t  - i f x )  (2.3) 

Vo (z) wil l  be  t h e  so lu t i on  of t h e  e q u a t i o n  

#/ p (p p ) 
V'o' + - -  V0 + 2 _  _ f f  V0 = 0 (2.4) 

/z # 

4 Existence has often been proved practically, by giving the solution. The theoretical discussion 
of the problem of existence is found in Z. Suzuki, "On Love Waves in Heterogeneous Media," 
Science Reports, T6hoku Univ., ser. 5, 7:82-93 (1955). 
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This equation can be reduced to a simpler form 

# 

61 

(2.5) 

M(z) - #,2 t~,l 
4# 2 2# 

using a substitution V0 (z) = ~-1/2 V(z). We will simply denote this equation by  

L(p,f; z) = 0 (2.6) 

The boundary condition at  the free surface is 

#l 
- 2-; v + v '  = 0 (2.7) 

Suppose the distribution of the material gives a favorable condition under which 
some kind of surface wave can exist. If the phase velocity of this wave corresponding 
to the frequency p is c, the differential equation 

L(p, p/c; z) = 0 (2.8) 

must have a convergent solution satisfying the boundary condition (2.7). If the 
phase velocity differs from c by a small amount  Ac, the solution of 

L(p, p/c + Ac ; z) = 0 (2.9) 

satisfying (2.7) does not generally give a convergent solution, because the phase 
velocity cannot take an arbi t rary value if the frequency is determined. If, therefore, 
there is a solution with a frequency p, we can find it by  substituting various values 
of c into the differential equation (2.8) until we find a convergent solution which 
satisfies (2.7). The simple Love-wave computation described in the preceding sec- 
tion is an example of the use of this process. For tha t  case the solution can be easily 
obtained analytically, but  even if the analytical solution is difficult or impossible 
because of a complicated distribution of a material, we can still solve the equation 
numerically by using the method described above. 

2.1. Linearly increasing density and rigidity 

MeissneP first considered the problem of a half space in which the density and 
the rigidity are given by the expressions 

p = p0(1 + ~z), p = #0(1 + ez) (2.9) 

This problem can be easily reduced to tha t  of ~ = 0, or constant density. 
Introducing (2.9) into (2.5) we have 

d2V I x ~°2( ~) (~ ~)1 dT-  + ~ + }- 1 - _ 2 _ oj2 V = 0 (2.10) 

5 E. Meissner, "Elastische Oberfl~chenwellen mit Dispersion in einem inhomogenen Medium," 
Vierteljahresschr. Naturforsch. Ges., Ziirich, 66:181-195 (1921), and "Elastische Oberfl~chen- 
Querwellen," Proc. Sec. Int. Cong. Appl. Mech. (Zfirich), 3-11 (1926). 
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where 

~ - = 1 + ~  

- f / ~ ,  co2 = p2P° 1 
#o e ~ 

If we put 

x2(1 _ ~/~) ~ o;2, ~2 _ x2~/~ ._> ~:2 (2.11) 

1.5 

1.2 

I.I 

° 
O 

.2 .4 .6 
] . 0  i _ I 

0 .8 1.0 

Fig. 2. Phase velocity of first- and second-mode Love waves inca half 
space with linearly increasing shear modulus and constant  density. 

into the foregoing expression we have 

d~.__ i _ +  + ~ _ ~ 2  V = 0 (2.12) 

which is identical to the equation for a medium with constant density. 
This equation (2.12) can be solved following the principle given in section 2 under 

the condition of zero stress at the free surface of the half space. The numerical result 
is given in figure 2. 

The following simple formula was employed for the numerical solution of the 
equation 

g~+l = V~ + zXV~_, + h~g "' + O(h9 (2.13) 

where h is the interval of two consecutive variables, and 
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i 172 9925 I 
5 3 5 3 

io 2 io 1 

20 20 
25 3 - 25 6 - 
30 7 3O 
35 6 35 9 
40 8 40 9 
45 3 4~ 3 
50 ~ 50 9 
55 5 55 9 
60 3 60 4 
65 9 65 5 
70 3 70 5 
75 7 75 3 
80 80 ! 
85 5 85 9 
9O I 9o ' 9  - 
95 95 9 

ioo 2 ioo 
lO5 8 105 3. - 
II0 8 II0 8 - 
u5 4 n 5  ~, - 
120 7 120 i - 
i~5 8 125 

13o i - 
135 3 - 
140 7 - 
145 h 

i . 172 9775 150 4 
5 3 155 7 - 

IO - I 
15 - 9 
20 
25 5 - 
30 - I 
35 S 5 3 
40 9 - !0 I 
45 3 - 15 - 8 
50 9 - 20 
55 - 25 7 - 
60 6 - 30 I 
65 9 - 35 9 
70 9 - 4o 
75 9 - h5 2 
SO 8 50 B 
85 8 - 55 7 - 
9O 9 - 60 I 
95 ~ ~5 2 - 

i o o  5 70 
!o5 z - 75 7 - 
Ixo 9 - 80 4 
~-15 9 - 85 i - 
120 2 90 8 - 
125 8 95 7 - 
13o 8 I00 6 - 

io5 7 - 
! I O  8- 

115 
12o 
z25 
]_3o --2 

• 135 - i 
] £ o  
z h 5  2 
15o 7 
z55 5 
160 9 
165 
170  

1 
4 

172 9725 

172 9675 

Fig. 3. In order to save time required for plotting, an IBM "CPC" was used to draw a curve 
given as the solution of the differential equation (2.12). The minus signs denote the zero line. The 
value of V is given to six digits, say, 1.23456. Only the first three digits 1.23 are adopted for 
plotting. The third number, "3," is printed at the point indicated by the first two numbers, namely, 
the twelfth location to the right of the zero line. Zeroes are not printed by the machine. Two 
parameters are shown on the right side of the figure. The first parameter (172) was fixed and the 
second was changed. The correct answer lies between 9725 and 9675 in this case. 
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An IBM "607" electronic computer was used for this computation. Using the sub- 
stitution of (2.11) the solution in a medium with linearly increasing density can be 
obtained. Parts  of the first-mode curve have been published by a number of 
authors2 Figure 3 shows how we can determine the range of one parameter while 
the other is fixed when computing the second mode. 

--+p 

.0~ I L5 2 2.5 

o ~  ] v" 

c -  

) 

4 

5 ~ SOU 

o 1 2 3 4 5 6 

Fig. 4. Density and sound velocity dis- 
tribution with depth for C. Drake's case. 

3. Sound waves in a heterogeneous liquid medium 

When the medium is an elastic liquid we have a formula similar to the previous 
one. The fundamental  equation in a two-dimensional liquid medium is 

If we put 

I 02u 0 (XA) 
P O t  2 -- Ox 

P Ot 2 -- Oz 

-XA = 

6 First paper of T. Takahashi cited in note 3 above. 

Ou Ow 

(3.1) 

(3.2) 
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which is the pressure, into the foregoing equation we have  

I 02u O~v 
P Ot 2 = -- O--x 

02w O~v 
P Ot 2 -- Oz 

2.1 

2.0 

1.9 

1.8 
E 

v 

1.7 g 

1.6 ] 

L5 

1.4 

t 
veloc/ty 

, \ 

t 

', Group veloc/ty 

\ 

\ _ - -  

---~ Frequency ( c y c l e / s e c )  
f I I 

0 -I0 20 50 

Fig. 5. Calculated phase and group ve- 
locity based on the data given in figure 4. 
Group velocity was obtained by numer- 
ically differentiating the phase velocity. 

From these equations we can easily get to the next one 

02~ p' Off) 
P ~ = X V 2 # - - X  p Oz 

If we;make the substitutions 

and 

p - -a /~ 

x - - ] / p  

65 

(3.3) 

(3.4) 

(3.5) 
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into this expression we have an equation identical to (2.2), which is the equation 
for the SH wave problem. 

Also for the boundary conditions there is a correspondence between the two 
problems. 

At the free surface of the liquid medium we have ~ = 0, which corresponds, from 
(3.5), to v = 0 in the SH wave problem. The rigid boundary of a liquid medium 
requires w = 0, which is identical to O~z/Oz = 0 from (3.3) and corresponds to the 
free surface in the case of SH waves. Summarizing these cases we have the relations: 

S o u n d  w a v e s  S H  w a v e s  

Free surface - -  Fixed surface 

Rigid surface - -  Free surface (3.6) 

If the substitutions given by (3.5) and (3.6) are made, a problem of sound waves 
turns out to be that  of SH waves, and vice versa. Therefore, the fundamental equa- 
tion of this case can be obtained by slightly modifying the equation (2.5). Putt ing 

we have 

= II0 (z) exp (ipt -- ifx) 

I I  0 = pl/2 IT 

I I"  + R(z) + 2 ~ _  f2 II = 0 

3 p'~ 1 p'~ 
R ( z )  = - ~ p2 + 2  p 

(3.7) 

(3.8) 

3.1. Example of sound waves in a heterogeneous liquid 

An interesting example based on the data from shallow-water explosions has been 
presented by Charles Drake of the Lamont Geological Observatory. v The distribu- 
tion of sound velocity and density is shown in figure 4. 

Although there is a surface layer of homogeneous water, there is no essential 
change of the principle of calculation. The result, which was obtained with the aid 
of an IBM "650," is given in figure 5. A few minutes are required to compute a 
point on the dispersion curve. The group velocity was obtained by numerical differ- 
entiation. In figure 6 the distribution of II is given, which shows how the pressure 
changes with depth. 

4. Rayleigh waves 

In the previous sections we have dealt with the problems of SH waves in a solid 
and sound waves in a liquid. We shall now develop our method of solving the prob- 
lem of Rayleigh waves, for which there are two variables, dilatation and rotation 
or horizontal and vertical displacements. The number of parameters also increases 
in this case. 

7 C. Drake, personal communication. 



68 BULLETIN OF TI~E SEISMOLOGICAL SOCIETY OF AMERICA 

4.1. Theory of simple Rayleigh waves 

First, assume a homogeneous medium in which the motion can be expressed by 
two potentials ¢ and ¢ satisfying differential equations of the type 

1 05¢ 1 02¢ 
V2¢ = cP 2 0 t  ~ , V2¢ cs ~ Ot 2 (4.1) 

respectively. Cp and c~ are the velocities of P and S waves. When the direction of z 
positive is taken vertically downwards, the two components of motion, u and w, 
may be expressed in terms of ¢ and ¢ as 

a~b a¢  a¢ a~ (4.2) u = ax az ' w = Oz + a x  

Since at  first we assume the medium to be homogeneous, the equation (4.1) is 
satisfied by the functions 

/ ~b = {Aexp (az) + Bexp  ( - a z ) }  exp (ipt - i fx)  

[ ¢ = { C exp (flz) + D exp ( -  flz) } exp (ipt - i fx)  

~ 2 = f 2 _ p 2 / c p 2  ' f12 = f 2 _ p 2 / c s 2  

(4.3) 

The stress components p= and p=,  which must vanish at the free surface z = 0, 
then take the following form 

a~ ~ a2¢ a~'~ 
px~ = ~ 2 ~ + ax 2 az 2 /  

= ~ [ A ( - i 2 f a )  + B ( i2 fa )  + C ( - 2 f  2 + p2/cs~) + D ( - 2 f  2 + p~/cs2)] 

\Oz ~ + axOz/ 

= u [ A ( 2 f  2 - p2/cs2) + B ( 2 f  2 - p2/cs2) + C ( - i 2 f f l )  + D(i2f~)] (4.4) 

In addition to the two boundary conditions 

p= = 0, pz~ = 0 (4.5) 

at  z = 0, we usually assume two extra conditions 

~ = W - - - - 0 ,  at z-----co 
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In  this case, however, we will assume the following conditions in place of the fore- 
going two: 

l i u  = aQ exp ( ipt  - i f x )  
(4.6) 

( w = Qexp ( ipt  - i f x )  

where a is the ratio of the ampli tude of two displacement components. 
We have four parameters  A, B and C, D in (4.3), and the four conditions in (4.5) 

and (4.6) determine the values of all four quantities, namely 

A = K { - (2ff - p2/c~2) + 2afc~ }/c~ 

B = K I (2p - p2/c~2) + 2 a f a } / a  

iC  = K { a ( 2 f f  - p2/cz~) - 2 f ~ } / f l  
(4.7) 

i D  = K I - a ( 2 p  - p~/cs  2) - 2ff~}/~ 

K = Q(cz2/2p  2) 

Since A is the coefficient of the exponential function with a positive argument,  A 
must  be zero so long as we search for a solution convergent at  z = co. The same 
situation holds with respect to C and we must  have 

(A=o 

C = 0  
{ - ( 2 f  2 - p2/c~ 2) + 2af,~ = 0 

o r  ( 4 . 8 )  

a(2 f f  --  p2/cs2) --  2 f~  = 0 

These are the two equations involving two unknowns a and c. They  give the surface- 
wave velocity and also the ratio of the ampli tude of the two components of motion 
which vanish at  z = co. If  we eliminate a from (4.8), we have the ordinary charac- 
teristic equation for Rayleigh waves 

(2p - p2/c~2)2 - 4 f f a ~  = 0 (4.9) 

The first equation of (4.8) defines a curve X in the a - c  plane and the second equa- 
tion defines curve Y. The intersection of the two curves, point P, gives the velocity 
and the ampli tude ratio of Rayleigh waves. 

5. Numerical method for Rayleigh waves 

Suppose there is a set of differential equations for u amd w 

Ll (u ,  w) = O, L~(u, w) = 0 (5.1) 

After specifying the conditions at  the free surface we can solve the equations nu- 
merically start ing from z = 0. At  the beginning, however, we must  give the values 
of a and c tentat ively.  In  the case of the homogeneous half space, if the values of a 
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and c give the coSrdinates of P in the a-c plane in figure 7, then the solution con- 
verges to zero at z = co and gives the true distribution of u and w. At other points 
in the a-c plane, A and/or  C take values other than zero and the solution does not 
converge at  z -- Go. 

This method of searching for the combination of two parameters can be applied 
to the problem of heterogeneous Rayleigh waves. If the solution exists, it requires 
a certain definite combination of parameters, which must be obtained by trying the 
solution of the equation with various combinations of parameters until a correct 
result is found. 

c × 

a 

Fig. 7. Curve X satisfies the condition 
t ha t  A, the first expression in (4.7) van-  
ishes, while the curve Y satisfies the con- 
dition tha t  C becomes zero. The intersec- 
tion P gives the velocity and the amplitude 
ratio which provide the solution of equa- 
tion (4.1), which is the Ruyleigh-wave 
solution. 

The equation of motion when the medium is not necessarily homogeneous is as 
follows: 

O2u O 

P Ot 2 - Ox 

O2w O 
( P Ot 2 - 

Assuming the form 

{ 0u 0u)} 
(h - -k2g)~xx+X + g ~xx +-~z  

{( )} { °2 Ow Ou o Ow + X 
Ox u ~ + ~z + Oz (x + 2U) Oz 

(5.2) 

{ U ~ Uo (z) exp (/lot - ifx) 

Wo (z) exp (ipt - ifx) 
(5.3) 

we have differential equations for 

[ d2Uo dt~ dUo 2{pp ~ 
~ ~z~ + ~z -dT- + f f~ - 

I d2Wo d (X + 2~) • 

[ - if{(X + ~) 

Uo (z) and Wo (z) 

(X + 2~) Uo- if ( X - t - # ) - & z  + ~-z W -- 0 

d W ° f f {  pp~ } - E - +  7 - ~  Wo 

dUo dX o} -&z -Jr-~ U = 0 (5.4) 
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Boundary conditions at  the free surface are 

( dUo 
--i  f Wo + dzz = 0 

dWo 
- - i f  Uo + (1 + 2v/X) = 0  

(5.5) 

Introducing a new notation 

7 ~ --- (x + 2 ~ ) / ~  (5.6) 

which may be a function of z, and also employing new independent variables U 
and Wdefined by  

where 
iUo = 1£-1/2U and Wo = 7o(X + 2tk)-mW (5.7) 

70 = 7z--O 

we have the following equations of motion : 

[ 1__~ I 72--1 X' ,u'}3,Ow= U" + {M(z) + K(z)} U + f (72 -1 )  ~o W' + f - + - -  0 
~, 2 ~ ~ 7 

[ { 7 2 - 1  U'  f 1 X' 7),2_ 1 ") '0W,,+ 7 O w _  f ~ - -  + - - - +  U = 0 ~- { N (z) + L(z) } "Y ~2 ~ 2 

where 

M(z) = 
#t2 lift 
4t~ ~ 2t~ 

= _ 

N(z) = (~' + 2 / )2  
4(X + 2~) 2 

x" + 2/' (d  1) 
-- 2(X + 2u)  ' L ( z )  = f2 CP 2 ~ 

(5.8) 

Boundary conditions that  the surface is free from tractions are, from (5.5) and 
(5.7), 

f S " O W +  U, 1 # ' U =  0 
7 2 #  

- f U +  7°~/ W' 1 70 X'+ 2t~'W__ 0 
72 - 2 2 7 (72-2)  u 

(5.9) 

In addition to the foregoing two conditions, which require the two stress com- 
ponents to be zero, we state two extra conditions corresponding to (4.6), namely, 

iUo = aQ, Wo = Q (5.10) 
a t z  = 0. 
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Since Q is arbitrary, we may change (5.10) to 

U = a  W =  1 (5.11) 

Using (5.8), (5.9), and (5.11), we can determine the distribution of U and W as 
functions of z with a parameter f, provided a and c are given tentatively. 

If 3' is constant, which requires that  the ratio of the velocity of P and S waves 
remains constant, we obtain somewhat simpler expressions. 

Equations of motion: 

1 #' 
U"  + {M(z) + K(z)}U + f(v 2 - 1)W' - ~ f(v 2 - 3) --  W = 0 

# 

W "  + {M(z) + L(z)} W - f~2~,2 -~1  U' _ 21 f~/e ~,2- 3 ~v' U = 0 

M(z) t~'2 ~" K(z) f2c(~ ) = 4it 2 2tt ' = _ y2 (5.12) 

Boundary conditions: 

f W +  U' 1 ~' U = 0 
2~z 

~,2 W' ~2 tL' 
- f U  + ,rTZ- ~ "r 2 - 2 2** W = 0 

(5.13) 

Further, if X, t~, and p are all constant, M(z) vanishes and (5.12) reduces to a 
simpler form 

U " + K .  U + f ( v 2 - 1 ) W ' = 0  

W " + L .  W -  f ~ , 2 _ l  U' = 0 ,.y2 

(5.14) 

where K and L are no longer functions of z. 
(5.13) is also modified and becomes 

f w + u ' = o  

,),2 
- f u  + ~ - - - ~ w '  = o 

(5.15) 

If we solve (5.14) under the conditions (5.11), (5.15), assuming that  U and W 
both vanish at great depth, we should obtain the well-known values of the ratio 
of the two displacement components and the velocity of Rayleigh waves. 
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This  m e t h o d  was tes ted  and  the  correct  va lues  of a and  c were ob ta ined  for var ious  
va lues  of f, namely ,  

a = 0.6813 and c2/c~ ~ = 0.845 (5.16) 

for  the  case X = # = constant .  

5.1. Rayleigh waves in a heterogeneous medium--linearly increasing elastic 
constants 

Eqs.  (5.8) and  (5.9) are the  general  equat ions  which can be used even when  the  
mate r i a l  cons tan t s  are a r b i t r a r y  funct ions  of depth .  However ,  in order  to  compare  
wi th  the  case of Love  waves  which was discussed in sect ion 2, we assume l inear ly  
increasing e las t ic i ty  and  cons tan t  deo_sity. ~ was assumed  to  be constant .  

In  this case th ings  are m u c h  simplified.  Equa t i on  of mot ion :  

( d2U [ ~ + {M(r) + K(r)} U + ('12 _ 1) ~ d W  
dr  

I d2W -- "12- 1 d U  
( ~-rT + {M(r) ÷ f-(r)} W "12 ~ dr  

2 ( ' 1 2 -  3 ) ~ W  = 0 

(5.17) 

1 " 1 2 - 3 ( U =  0 
2 3, 2 r 

where  

g = go(1 + ez) , X/g = 3 '2 -- 2 = const. 

r = U/~to = 1 -k- ~z , go = u~=o 

and 

M(r) = 1 / 4 r  2 

- ( ; )  K ( r )  = ~,2 }2 
i ( r )  = 2 r 

= f / f :  , = c / c o  = c / c s ,  ~=o 

B o u n d a r y  condit ions:  

( z =  O, o r f  = 1) 

( 
I 

I - ~ U  + 

d U  1 
U = O  

dr  2r  

3 '2 d W  "12 1 

3, 2 -  2 d~ 3, 2 -  2 2~ 
W = O  

(5.18)  
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Fig. 8. Dispersion curves of Rayleigh waves propagated 
in a medium with constant density and linearly increasing 
rigidity. Broken lines are the dispersion curves of Love 
waves which were shown in figure 2. 

X = p ~  Or .y2 = 3 

I d~U dW 
d~- + {-~(~) + ~ (0}  U + 2~ :dT- = 0 

] d~W -- 2 dU ~ -  + {M(~) + £(0} W - ~ ~-@- = o 

- -  1 
M(f) - 4~2, and 

D2 ~ )  ~2 
£ ( o - -  ~ -  

(5.19) 

(5.20) 
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and at ~ = 1 

dU 1 
~W-4- dr 2r U = 0 

d W  3 
I -~U-4-  3 dr 2 r W  = 0 

(5.21) 

Extra conditions (5.1) also hold at r = 1. 

5.2. Practical  numer ica l  computat ion 

For the practical computation, formulae similar to (2.13) were employed. The 
fundamental equations are 

i Un+l = Us 2[- AUs-1 -iF h2Un '! -Jr- O(h4) 

d 1 
( ~ Us ~-h {llAUs_, - 7hUs_2 -b 2AU,_3 + 0(h4)} 

(5.22) 

where h is the interval of numerical calculation, 
A implies the difference. 

We have similar formulae for the function W. 
The final expressions for the calculation are 

Un+l "~ Un -3(- AUn-1 -- h2(-/~ ~- K)Un - ~ h~(llAW~_I -- 7AWn_2 -1- 2AW~_z) 

(5.23) 
- -  1 

W,~+I = Ws -t- hWn_l - h2(M ÷ L)W,~ A- ~ h~(115Us_l - 7AUs_2 -4- 2AUs_a) 

m 
K, L, and M are defined by (5.20). The derivatives at  the free surface r = 1 are 
given in the following expressions, which are necessary to start  the numerical 
calculation: 

U = a ,  W = I  

dU 1 d W  1 1 

dr 2 A- a -  2$ d W  W 2 dU 
- dr ' dr 2 - + [" -~ 3 ~ dr 

( 1 )  
d~ ~ - + , ~  a -  + K ~ -  2~ d~ ~ -  

dr ~ -  + ~ ' ~  - +/~ -dT + ~  ~dr ~ 
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Fig. 9. Relation between D and a which gives convergent distribution 
of U and W, for the fundamental mode, right, and the second mode, left. 
The parameter in the figure is ~. 

~=30 ( L : .209440 H ) ~=30 (L---.209440 H) 

c/c o=.95445,  e =.68645 c/c  o :1.1658, a=0.46986 
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Fig. 10. Example of tile distribution of U (broken line) and W (solid 
line) for the fundamental mode, left, and the second mode, right, for the 
heterogeneous half space. 
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~ = 15, ( L = . 4 1 8 8 8 )  

a = .6955 

/ I ' j -  ) 

c/c o = O. 985 [, / 

c/c o = 0 .987  

o = .6920  

I / f / ~  

i 

L 

a = .69575  

I / ' -  9 

/ / 

-2L 

a = .6921 

If-) 
/ 
L 

% 
\ 

a = . 6 9 4 0  

/ ! / - -  

"!2 'i 

r 
a = .6922  

Fig. 11. Examples of the distribution of U and W which do not provide the con- 
vergent solution. For ~ = 15 the correct answer is c/co = 0.9861, a = 0.69280. 

The  dispersion curves, first and  second modes, are given in figure 8. F igure  9 gives 

the  re la t ion  be tween  phase veloci ty  and  the ampl i t ude  rat io a. F igure  10 is the  exam- 

ple of the  d i s t r ibu t ion  of U and  W. 
The  I B M  "650" was also used for this  calculat ion,  and  it  took from t h i r t y  

minu te s  to two hours  to  find one po in t  wi th  shorter  t imes  for be t t e r  s t a r t ing  

approximat ions .  8 I n  figure 11 typica l  examples of the  d i s t r ibu t ion  of the func t ions  
U and  W are shown for var ious  values  of a and  t) which do no t  give converging 

solutions.  
I n  this  paper  a ve ry  simple s t ruc ture  of the  m e d i u m  was assumed for the compu-  

ta t ions .  More  complicated cases and  the  problem of the spherical elastic body  m u s t  

be the  subjec t  of fu tu re  studies. 

8 In the present program ~ was fixed and t) and a were changed in order to get the answer. 
Although it is theoretically correct that at some definite combination of t) and a, U and W converge 
to ~ero, it is practically hard to find such a point sweeping the a-t) plane continually. 

The practical method here adopted was to find the values of a and t) which make U = W = 0 
at the depth z = e L, where L is a wave length and e is a constant. Better approximations are ob- 
tained with larger values of e. According to our experience and also from theoretical considerations, 
E = 2 gives a fairly good result, and e = 3 is large enough for the fundamental mode. For the 
second mode, however, sometimes we must make e fairly large, say 5 or 6. 

LAMONT GEOLOGICAL OBSERVATORY (CoLuMBIA UNIVERSITY)~ 
PALISADES~ NEW YORK. 
(Lamont Geological Observatory contribution no. 317.) 


