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NUMERICAL INTEGRATION OF THE EQUATION OF MOTION FOR
SURFACE WAVES IN A MEDIUM WITH ARBITRARY
VARIATION OF MATERIAL CONSTANTS

By Yasuo Satd

ABSTRACT

The caleulation of surface-wave dispersion is difficult when the waves propagate in media whose
physical properties change with depth, and only a few solutions are available for fairly simple cases.

These computations may now be performed with the aid of high-speed computers, even for media
whose material constants change arbitrarily with depth. The dispersion of both Love waves and
Rayleigh waves has been obtained for such cases by the numerical specification of surface displace-
ment followed by numerical solution of the equations of motion.

For example, with respect to the problem of Love waves, besides the ordinary boundary condi-
tion that the stress vanishes at the {ree surface, an extra condition is stated which requires that
the displacement amplitude be unity at the surface. The equation of motion is then solved numeri-
cally for tentative values of frequency and wave number, and this solution produces the distribution
of displacement amplitude in the half space. For all combinations of frequency and wave number
which are not solutions, the values of computed displacement do not converge and tend to become
positively or negatively infinite for increasing depth below the free surface. To obtain a solution,
one of the parameters—for instance, wave number—is fixed, and frequency is varied in small
steps until the computed displacement converges to zero at great depths. This combination of
parameters fulfills all the standard boundary conditions and is the required solution. The problem
of sound waves in an elastic liquid can also be solved with only a minor change in the physical
properties.

The dispersion of Rayleigh waves propagating in a heterogeneous substance can also be obtained
by a similar method. In this case, another parameter is needed, namely, the ratio of the amplitude
of horizontal and vertical components of displacement at the free surface. Denote this quantity
by @, and the phase velocity by ¢. Wave number is fixed, and a two-dimensional search in the a—¢
plane is used to locate the point that produces a convergent solution. For limited media a solution
is required which satisfies the boundary conditions at the other surface.

After testing the method by applying it to cases which had been solved analytically, a few
problems were solved. These include:

1) Love waves in a medium with constant density and linearly increasing rigidity.

2) Sound waves in a medium whose density and velocity are given by experimental curves.

3) Rayleigh waves in a medium having constant density and equal rates of increase for A and p.
Using an IBM “‘650,” it takes a few minutes to get a point for cases 1 and 2, and from thirty
minutes to two hours per point for Rayleigh-wave dispersion.

Introduction

Determination of the velocity of propagation is one of the most interesting as
well as important problems in the study of the propagation of surface waves. When
the medium consists of one or two homogeneous materials with layered structure,
it is not difficult to calculate the dispersion curve. Today, by the use of electronic
computing machines, it has become possible for us to assume a large number of
layers, every one of which is homogeneous.!
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If the material is heterogeneous, however, the analytical method of solution be-
comes very difficult. The dispersion curve has been computed for certain structures
having relatively simple variation of material properties,? and various methods of
approximation have been suggested,® but not without restrictions such as the con-
tinuous increase of the body-wave velocity.

The numerical method presented here has no restrictions in the distribution of
the material. The problem is assumed to be two-dimensional.

1. Simple Love waves

First, we shall consider a simple problem of Love waves, which can be easily
solved analytically.

The horizontal displacement » perpendicular to the z—z plane satisfies the differ-
ential equation

W= o (1.1)
where cg is the velocity of S waves.
Assuming the form of solution
v = V(z) exp (ipt — ifz) (1.2)
substitute into the foregoing equation. The equation for V(z) becomes
d22 + (@*es* — AV =0 (1.3)
The solution is given by
V() = A cos Bz + Bsin Bz
(1.4)

= Vp¥es® — f?
Similarly in the half space the differential equation for the displacement ' is

1 9%’

’
VY = csr? Ot2

(1.5)

and the function V'(z), which gives the vertical distribution of the amplitude,
satisfies the equation
dy’ , ) ,
= (f e V=0 (1.6)

where cg’ implies the shear velocity in the half space.

* Cf. M. Ewing, W. Jardetzky, and F. Press, Elastic Waves in Layered Media (New York:
McGraw-Hill, 1957), chap. vii.

3 K.g., H. Jeffreys Proc. London Math. Soc., 23: 428-436 (1923); C. L. Pekeris, Physics, 6: 133—
138 (1935) M. Newlands, Mon. Not. Roy. Astron. Soc., Geaphys Suppl., 6: 109-125 (1950); T.
Takahashl, Bull. Earthg. Res. Inst., Tokyo Univ., 33: 287-206 (1955), and 35: 207-308 (1957).
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The solution of this equation is

V'e) = A’ exp (8'2) + B’ exp (—8')

(1.7)
B = f* — p¥esi?
The condition at the free surface z = —H is
v
Dy = p 9 0 (18)
at the surface of separation of two media z = 0,
Pye = Py’
and (1.9)
y =

In addition to these conditions we usually assume that »” vanishes at z = «. In
place of this last condition, here we will instead assume that the amplitude is C at
the free surface, that is,

AcosBH — BsinfH = C (1.10)

By means of these four equations (1.8), (1.9), and (1.10) we can determine the four
quantities A, B and A’, B’.

Omitting A and B, which are not necessary now, we will give the expressions for
A’ and B’. A’ must be zero in order to get a convergent solution atz = «.

K

C <cos BH — ’fB sin 5H>/2

It

u'B’
4 1.11)
l B =C (cos BH + th, sin EH)/Z

If we put A’ equal to zero, we have the ordinary characteristic equation for Love
waves; or, in other words, this equation is the condition that the displacement
vanishes at 2 = «. If, however, this relation does not hold, the term A’ exp (8'z)
goes t0 + or — o according to the sign of A. Only the proper combination of p and
J makes A’ zero and the solution convergent.

Suppose we solve the differential equations (1.3) and (1.6) numerically, starting
from the free surface under the conditions (1.8), (1.9), and (1.10). In this case we
must tentatively give the values of p and f in order to start a numerical solution.
Generally they do not provide a correct answer and the solution will not be con-
vergent. However, if we fix f and change p by small steps (or fix p and change f),
we shall finally get to the right value of p (or f), which gives the convergent solution
of the differential equation in the half space. The ratio p/f gives the phase velocity,
‘and the integrated curve of the equation gives the distribution of the amplitude.
Figure 1 shows an example of the caleculation and illustrates how the distribution
of the amplitude changes with the various combinations of p and f.
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2. Love waves in a heterogeneous medium

Even if the medium contains no layers, surface waves of the Love-wave type can
exist under certain conditions.4

The fundamental equation for this case is, since the z and z components of dis-
placement are missing,

% 9 61)) d < 62))
Por = o (" oz) T 5 \* & @.1)
MN7u=2, cg/cs=4/3, £€=1.3876
c/cs=1.23 c/cs=1.20 c/cs=l.17

o1 S/

AL 1162 0 1264
B. .6613 6055 5390

Fig. 1. When u'/u = 2, ¢s’'/cs = 4/3, corresponding to
& = 1.3876, we have ¢/cg = 1.20 as the root of the char-
acteristic equation for Love waves. That means A’ in
(1.11) becomes zero for this value of ¢/cg and the solu-
tion of the differential equation (1.6) converges to zero
(middle figure). However, if ¢/cs = 1.23, A’ becomes
negative and the solution of the differential equation di-
verges to — o (left figure), while if ¢/cs = 1.17, A’ is
positive and the curve goes to + « (right figure).

If uis a function of z only, (2.1) becomes

M, e
p6t2_yvv+dz 9z 2.2)

If we assume that
v = Vo (2) exp (ipt — ifx) (2.3)

Vo (2) will be the solution of the equation
Vo + Z— Vo + <p2£ - f2> Vo =0 (2.4)

¢ Existence has often been proved practically, by giving the solution. The theoretical discussion
of the problem of existence is found in Z. Suzuki, “On Love Waves in Heterogeneous Media,”
Science Reports, Téhoku Univ., ser. 5, 7: 82-93 (1955).
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This equation can be reduced to a simpler form

v+ [M(z) + (p“s — f>] V=0
(2.5)

using a substitution V, (2) = u=Y2 V(2). We will simply denote this equation by
L(p, f;2) =0 (2.6)

The boundary condition at the free surface is
. '
o V+7v 0 2.7

Suppose the distribution of the material gives a favorable condition under which
some kind of surface wave can exist. If the phase velocity of this wave corresponding
to the frequency p is ¢, the differential equation

L(p,p/c;2) =0 (2.8)

must have a convergent solution satisfying the boundary condition (2.7). If the
phase velocity differs from ¢ by a small amount Ae, the solution of

Lip,p/c + Ac;2) = 0 (2.9)

satisfying (2.7) does not generally give a convergent solution, because the phase
velocity cannot take an arbifrary value if the frequency is determined. If, therefore,
there is a solution with a frequency p, we can find it by substituting various values
of ¢ into the differential equation (2.8) until we find a convergent solution which
satisfies (2.7). The simple Love-wave computation described in the preceding sec-
tion is an example of the use of this process. For that case the solution can be easily
obtained analytically, but even if the analytical solution is difficult or impossible
because of a complicated distribution of a material, we can still solve the equation
numerically by using the method described above.

2.1. Linearly increasing density and rigidity
Meissner® first considered the problem of a half space in which the density and
the rigidity are given by the expressions

p = p(l + 62), p= up(l + e2) (2.9)

This problem can be easily reduced to that of § = 0, or constant density.
Introducing (2.9) into (2.5) we have

axv 1 2 b )
W—i—[‘l_{z_!_ ‘;—<1—;> - (’52—602_6)] V=0 (210

5 B. Meissner, ‘‘Elastische Oberflichenwellen mit Dispersion in einem inbomogenen Medium,”
Vierteljahresschr. Naturforsch. Ges., Zurich, 66: 181-195 (1921), and “Elastische Oberflichen-
Querwellen,” Proc. Sec. Int. Cong. Appl. Mech. (Ziirich), 3-11 (1926).
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where
{=l+e
po 1
£ = fle, wt=p 2
If we put
(1l — 8/¢) > ?, £ — w/e— £ (2.11)
1.3
1.2 -
(@]
N
Q
[
e —
10 : : ; : :
0 2 4 6 8 10

Fig. 2. Phase velocity of first- and second-mode Love waves in'a half
space with linearly increasing shear modulus and constant density.

into the foregoing expression we have

v [ 1 f—ﬂ _
e [4§2+ c—Efv=o0 (2.12)
which is identical to the equation for a medium with constant density.

This equation (2.12) can be solved following the principle given in section 2 under
the condition of zero stress at the free surface of the half space. The numerical result
is given in figure 2.

The following simple formula was employed for the numerical solution of the
equation

Vasr = Vo + AVaot + B2V, 4 004 (2.13)

where  is the interval of two consecutive variables, and

AVn-—l = Vn - Vn—l
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1 - 172 9925 1 - 172 9725
5 - 3 5 - 3
10 - 2 10 - 1
15 - 15 -9
20 - 20 -
5 3 - 25 6 -
30 7 - 30 -
35 6 - 35 9 -
ho 8 - Lo 9 -
45 3 - L 3 -
50 1 - 50 9 -
55 5 - g5 9 -
60 - 60 L -
65 9 - 65 5 -
70 3 - 70 5 -
75 7 - 75 3 -
8o - 80 1 -
8 5 - 85 9 -
90 1 - %0 9 -
95 - 95 9 -
100 2 - 100 -
105 8 - 105 3 -
110 8 - 110 8 -
115 k - 115 L -
120 7 - 120 1 -
125 8 - 125 -
130 1 -
135 3 -
140 7 -
15 Lo~
1 - 172 9775 150 L -
5 - 3 155 7 -
10 - 1
15 -9
20 -
§§ 5 - 1 - 172 9675
35 8 - 3 - 3
1o 9 - 10 - 1
5 3 - 15 - 8
50 9 - 20 -
55 - 25 7 -
60 6 - 30 oY -
65 9 - 35 9 -
70 9 - Lo -
75 9 - 1S 2 -
80 8 - 50 8 -
85 8 - [ 7 -
90 9 - 60 1 -
95 1 - 65 2 -
100 5 - 70 -
105 1 - 7 7 -
110 9 - 80 L -
115 9 - 89 1 -
120 2 - %0 [ -
125 8 - o5 7 -
130 8 - 100 6 -
105 7 -
110 8-
115 -
120 -
125
130 -2
135 -1
140 -
5 -2
150 - 1
155 - 5
160 - 9
165 - 1
170 - b

Fig. 3. In order to save time required for plotting, an IBM “CPC” was used to draw a curve
given as the solution of the differential equation (2.12). The minus signs denote the zero line. The
value of V is given to six d1g1ts say, 1.23456. Only the first three digits 1.23 are adopted for
plotting. The third number, “3,”’ is printed at the point indicated by the first two numbers, namely,
the twelfth location to the rlght of the zero line. Zerces are not printed by the machine. Two
parameters are shown on the right side of the figure. The first parameter (172) was fixed and the
serond was changed. The correct answer lies between 9725 and 9675 in this case.
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An IBM “607” electronic computer was used for this computation. Using the sub-
stitution of (2.11) the solution in a medium with linearly increasing density can be
obtained. Parts of the first-mode curve have been published by a number of
authors.® Figure 3 shows how we can determine the range of one parameter while

the other is fixed when computing the second mode.

25

— Sound Velocity (krr?/sec)I
i 1 1

0 i 2 3 4 5 6 7

Fig. 4. Density and sound velocity dis-
tribution with depth for C. Drake’s case.

3. Sound waves in a heterogeneous liquid medium
When the medium is an elastic liquid we have a formula similar to the previous
one. The fundamental equation in a two-dimensional liquid medium is

RN d

P3r = 3 (\4a)
l o*w d ou , ow
[pé)tQ—azo\A)’ A—6x+62
If we put
—N=w

¢ First paper of T. Takahashi cited in note 3 above.

3.1

(3.2)
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which is the pressure, into the foregoing equation we have

o _ _ o
Porr = 7 oz
3.3)
l o*w W

Porr = 7 5
21t \

Phase velocity
20}

P
T
(km/sec)

— Velocity

© — Frequency (cycle/sec)

1 1 L

0 10 20 30

Fig. 5. Calculated phase and group ve-
locity based on the data given in figure 4.
Group. velocity was obtained by numer-
ically differentiating the phase velocity.

From these equations we can easily get to the next one

9% _ o’ W
pﬁ=)\v2’w—>\—p*a (3.4)

If we.make the substitutions
p—1/u

A—1/p (3.5)
and

U0
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into this expression we have an equation identical to (2.2), which is the equation
for the SH wave problem.

Also for the boundary conditions there is a correspondence between the two
problems.

At the free surface of the liquid medium we have @ = 0, which corresponds, from
(3.5), to v = 0 in the SH wave problem. The rigid boundary of a liquid medium
requires w = (), which is identical to d%/dz = 0 from (3.3) and corresponds to the
free surface in the case of SH waves. Summarizing these cases we have the relations:

Sound waves SH waves

Free surface — Fixed surface

Rigid surface — Free surface (3.6)
If the substitutions given by (3.5) and (3.6) are made, a problem of sound waves

turns out to be that of SH waves, and vice versa. Therefore, the fundamental equa-~
tion of this case can be obtained by slightly modifying the equation (2.5). Putting

b =T, (2) exp (ipt — ifx)

(3.7
I, = PmH
we have
oo (g o
3.8)
_ 302 1p”

3.1, Example of sound waves in a heterogeneous liquid

An interesting example based on the data from shallow-water explosions has been
presented by Charles Drake of the Lamont Geological Observatory.” The distribu-
tion of sound velocity and density is shown in figure 4.

Although there is a surface layer of homogeneous water, there is no essential
change of the principle of calculation. The result, which was obtained with the aid
of an IBM “650,” is given in figure 5. A few minutes are required to compute a
point on the dispersion curve. The group velocity was obtained by numerical differ-
entiation. In figure 6 the distribution of IT is given, which shows how the pressure
changes with depth.

4, Rayleigh waves

In the previous sections we have dealt with the problems of SH waves in a solid
and sound waves in a liquid. We shall now develop our method of solving the prob-
lem of Rayleigh waves, for which there are two variables, dilatation and rotation
or horizontal and vertical displacements. The number of parameters also increases
in this case.

7 C. Drake, personal comraunication.
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4.1, Theory of simple Rayleigh waves

First, assume a homogeneous medium in which the motion can be expressed by
two potentials ¢ and y satisfying differential equations of the type

1
052 2

<

1 3%
V2¢=5:2W’ Vi =

4.1)

D

respectively. cp and cg are the velocities of P and S waves. When the direction of 2
positive is taken vertically downwards, the two components of motion, u and w,
may be expressed in terms of ¢ and ¢ as

w=24% (4.2)

ge&

oy 3 | oy
dz’

Since at first we assume the medium to be homogeneous, the equation (4.1) is
satisfied by the functions

¢ = {Aexp (az) + Bexp (—az)} exp (ipt — ifz)
[ ¥ = {Cexp (B2) + Dexp (—B2)} exp (ipt — ifz)
(4.3)
a2=f2—p2/CP2, 62=f2_p2/cs2

The stress components p.. and p,., which must vanish at the free surface z = 0,
then take the following form

_ (9% o a_xe)
p”—”<2 6x62+6:v2 022

ulA(=i2/a) + B(2fa) + C(=2f* + p*/es’) + D(=2f* + p?/es”)]

% aw)
= AV + 2u (022 + dxdz

=3
w
I

i

w[A@2f* — p*/es®) + B2f* — p*/es®) + C(—i2f8) + D2/B)]  (4.4)
In addition to the two boundary conditions
Pzz = 0, Pe =0 7 (4.5)
at z = 0, we usually assume two extra conditions

u=w=0, at z=w
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In this case, however, we will assume the following conditions in place of the fore-
going two: ‘
u = al) exp (ipt — ifx)
(4.6)
l w = Qexp (ipt — ifx)

where a is the ratio of the amplitude of two displacement components.
We have four parameters A, B and C, D in (4.3), and the four conditions in (4.5)
and (4.6) determine the values of all four quantities, namely

4 = K{=Q@f* — p*/cs’) + 2afa}/a
B = K{(2f* — p*/cs’) + 20fa}/a
4.7
i€ = K{a2f* — p*/cs’) — 2/B}/B
iD = K{—a(2f* — p*/es’) — 2/B}/B

K = Q(cs*/2p%)

Since A is the coefficient of the exponential function with a positive argument, A
must be zero so long as we search for a solution convergent at z = «. The same
situation holds with respect to C and we must have

(A=0 —@2f* — p¥/es®) + 2afa =0
or (4.8)
C=0 a(@f — p¥/es?) — 2/ =0

These are the two equations involving two unknowns a and ¢. They give the surface-
wave velocity and also the ratio of the amplitude of the two components of motion
which vanish at z = «. If we eliminate a from (4.8), we have the ordinary charac-
teristic equation for Rayleigh waves

@f* = p*/cs’)* — 4f%af = 0 (4.9)

The first equation of (4.8) defines a curve X in the a—c plane and the second equa-
tion defines curve Y. The intersection of the two curves, point P, gives the velocity
and the amplitude ratio of Rayleigh waves.

5. Numerical method for Rayleigh waves

Suppose there is a set of differential equations for % amd w
Ih(u,w) =0, Lo(u,w) =0 (5.1)
After specifying the conditions at the free surface we can solve the equations nu-

merically starting from z = 0. At the beginning, however, we must give the values
of a and ¢ tentatively. In the case of the homogeneous half space, if the values of a
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and ¢ give the codrdinates of P in the a—¢ plane in figure 7, then the solution con-
verges to zero at z = = and gives the true distribution of u and w. At other points
in the a—c plane, A and/or C take values other than zero and the solution does not

converge at z = o,

This method of searching for the combination of two parameters can be applied
to the problem of heterogeneous Rayleigh waves. If the solution exists, it requires
a certain definite combination of parameters, which must be obtained by trying the
solution of the equation with various combinations of parameters until a correct

result is found.

¢ X

a

Fig. 7. Curve X satisfies the condition
that A, the first expression in (4.7) van-
ishes, while the curve Y satisfies the con-
dition that C becomes zero. The intersec-
tion P gives the velocity and the amplitude
ratio which provide the solution of equa-
tion (4.1), which is the Rayleigh-wave
solution.

The equation of motion when the medium is not necessarily homogeneous is as

follows:

0% d ou dw a ow | du
Porr = %{()‘+2“)ax+>‘az}+az{” (690 + 0z

o*w 9 ow . Ou d ow
| Por = £{u<£+gz‘>} +5é{(7\+2u)£+7\
Assuming the form
u = U, (2) exp (ipt — #fx)

w = W, (2) exp (¢t — ifx)
we have differential equations for U, (2) and W (2)

Fdr T de de Iz
Wy | d AW ol }

—z‘f{(x+u>%%+§§m}=o

)

(5.2)
2
or
(5.3)
du _
+ 7 Wo} =0
(5.4)
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Boundary conditions at the free surface are

([ —irw+ 20 g
(5.5)
—if Up+ (1 + 2u 2 <
Introducing a new notation
Y=+ 2u0)/n (5.6)

which may be a function of 2, and also employing new independent variables U
and W defined by

Uy = 12U and Wo = yo(A + 2u)~12W (5.7)
where

Yo = V=0

we have the following equations of motion:

1 2__1y Y0 ’ f 72_1& H‘i To =
{[U + {M@) + K@)} U+ fly 1)7W+fz\ 2 ,ﬂLn} V=0

— Yo _ =1 1_{__ v—lﬁ} _
lv w +{N(Z)+L(Z)}7 wW—f 5 U+ f,yz + u U=0
where
2 123 CZ
M@ = 5 = 5 K@) = (c? - 72>

(5.8)

3 N + 2u)? B N 4 2 B (6_2 B 1_
NO =4+ ~+an MO =P

Boundary conditions that the surface is free from tractions are, from (5.5) and
5.7,

’DW l U'_-IJ‘—,U—
fv 2 p 0
(5.9)

_ Yoy y 1y N2
| /U 27—y 70

In addition to the foregoing two conditions, which require the two stress com-
ponents to be zero, we state two extra conditions corresponding to (4.6), namely,

’L.Uo = IZQ, Wo = Q (510)
atz = 0.
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Since @ is arbitrary, we may change (5.10) to
U=a wW=1 (5.11)

Using (5.8), (6.9), and (5.11), we can determine the distribution of U and W as
functions of 2 with a parameter f, provided @ and ¢ are given tentatively.

If v is constant, which requires that the ratio of the velocity of P and S waves
remains constant, we obtain somewhat simpler expressions.

Equations of motion:

U+ (M) + KOIU + fot = DW= 3 ftt = 3 W = 0

W MG + L)W = A v - SR My o
MO =5-5, K@=r (c——7> (5.12)

Boundary conditions:

(5.13)

_ I, G M
JU+ =g W = 5 g W =0

Further, if A, u, and p are all constant, M (z) vanishes and (5.12) reduces to a
simpler form

U'"+K-U+ f(* - 1OW =0
v 1 (5.14)
W'+L-W~—f~——U =0
where K and L are no longer functions of z.
(5.13) is also modified and becomes
W+ U =0
(5.15)
27_—2 W' =20

If we solve (5.14) under the conditions (5.11), (5.15), assuming that U and W
both vanish at great depth, we should obtain the well-known values of the ratio
of the two displacement components and the velocity of Rayleigh waves.
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This method was tested and the correct values of @ and ¢ were obtained for various
values of f, namely,

a = 0.6813 and /et = 0.845 (5.16)

for the case A = p = constant.

5.1. Rayleigh waves in a heterogeneous medium—linearly increasing elastic
constants

Egs. (5.8) and (5.9) are the general equations which can be used even when the
material constants are arbitrary functions of depth. However, in order to compare
with the case of Love waves which was discussed in section 2, we assume linearly
increasing elasticity and constant denpsity. ¥ was assumed to be eonstant

In this case things are much simplified. Equation of motion:

,‘gg + MO+ RO U+ 60— DD i —%w —3)§W= 0
i (5.17)
LS+ 1 + Iy w -t dl 1288y
where
p=u(l+e), Nupw=~y*— 2= const.
C=u/mo=1+e, o= peo
and ’
M(;) = 1/4¢°
K@) = (?2— 72) g, L) = Gé ?—2 - .%) g2
E=Jle, b = c/co = c/cs, =0

Boundary conditions:

|
(5.18)
1{ 2
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1.4

Fig. 8. Dispersion curves of Rayleigh waves propagated
in 8 medium with constant density and linearly increasing
rigidity. Broken lines are the dispersion curves of Love
waves which were shown in figure 2.

If
A=u, or =3 (5.19)
we have
[ 20 4 (6 + Roy v+ 22 = o
(5.20)
D Q) + L) W - S5 = 0

M) = 4_1{2, K() = (?—2 - 3) g and L) = <§% — é) £
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and at { = 1
alu 1
J EW—‘_E_?EU:O
| (5.21)
aw 3
l—EU+3—J§j—2—§_W—O

Extra conditions (5.1) alsohold at ¢ = 1.

5.2. Practical numerical computation

For the practical computation, formulae similar to (2.13) were employed. The
fundamental equations are

{ Uner = Un + AUy + B2UL + O(hY)

d 1 (5.22)
a . _ 1 _ .
| a5 U, oh {11AUn-1 — TAUa_s + 2AU.-3 + O(R')}
where  histhe interval of numerical calculation,
A implies the difference.
We have similar formulae for the function W.
The final expressions for the calculation are

Unit = Us 4+ AUs1 — BT + KU, — %hs(llAW = TAWas + 2AW..)
(5.23)
Wit = Wo + AWo_y — B + L)W, + % Re(11AT, 1 — TAU,_ s + 24U._s)

K, L, and M are defined by (5.20). The derivatives at the free surface { = 1 are
given in the following expressions, which are necessary to start the numerical
calculation:

U=a, W =1

U W
(e R)emntl, 20 (o) 2e
(o0 e

d—;%/= (%Jr%nﬂz?) - <i+i> R LF ™ (5.24)
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Fig. 9. Relation between D and a which gives convergent distribution
of U and W, for the fundamental mode, right, and the second mode, left.
The parameter in the figure is &.

£:30(L=.209440 H) £=30(L=.209440 H)
c/co =.95445, a=.68645 c/cg = 11658, a=0.46986

FoL

2.5L

Fig. 10. Example of the distribution of U (broken line) and W (solid
line) for the fundamental mode, left, and the second mode, right, for the
heterogeneous half space. :
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£€-15, (L=.41888)
a=.6935 a=.69375

I,’
-
e

c/cy = 0.985 /

c/Cy= 0.987

Fig. 11. Examples of the distribution of U and W which do not provide the con-
vergent solution. For £ = 15 the correct answer is ¢/co = 0.9861, ¢ = 0.69280.

The dispersion curves, first and second modes, are given in figure 8. Figure 9 gives
the relation between phase velocity and the amplitude ratio a. Figure 10 is the exam-
ple of the distribution of U and W.

The IBM “650” was also used for this calculation, and it took from thirty
minutes to two hours to find one point with shorter times for better starting
approximations.® In figure 11 typical examples of the distribution of the functions
U and W are shown for various values of a and b which do not give converging
solutions.

In this paper a very simple structure of the medium was assumed for the compu-
tations. More complicated cases and the problem of the spherical elastic body must
be the subject of future studies.

8 In the present program £ was fixed and 0 and o were changed in order to get the answer.
Although it is theoretically correct that at some definite combination of b and ¢, U and W converge
to zero, it is practically hard to find such a point sweeping the ¢—D plane continually.

The practical method here adopted was to find the values of @ and b which make U = W =0
at the depth z = ¢ L, where L is a wave length and e is a constant. Better approximations are ob-
tained with larger values of e. According to our experience and also from theoretical considerations,

e = 2 gives a fairly good result, and ¢ = 3 is large enough for the fundamental mode. For the
second mode, however, sometimes we must make e fairly large, say 5 or 6.

LamoNT GEOLOGICAL OBSERVATORY (CoLuMBIA UNIVERSITY),
Pavisapes, NEW YORK.
(Lamont Geological Observatory contribution no. 317.)



