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R E P O R T S

Evidence for a Ubiquitous
Seismic Discontinuity at the

Base of the Mantle
Igor Sidorin, Michael Gurnis,* Don V. Helmberger

A sharp discontinuity at the base of Earth’s mantle has been suggested from
seismic waveform studies; the observed travel time and amplitude variations
have been interpreted as changes in the depth of a spatially intermittent
discontinuity. Most of the observed variations in travel times and the spatial
intermittance of the seismic triplication can be reproduced by a ubiquitous
first-order discontinuity superimposed on global seismic velocity structure
derived from tomography. The observations can be modeled by a solid-solid
phase transition that has a 200-kilometer elevation above the core-mantle
boundary under adiabatic temperatures and a Clapeyron slope of about 6
megapascal per kelvin.

Seismic studies provide information about the
composition, state, and dynamics of Earth’s
mantle. Global seismic velocity images repre-
sent snapshots of mantle convection (1), where-
as more detailed waveform studies provide ev-
idence for phase transitions, chemical heteroge-
neity, and partial melting in the mantle (2–4).
Unfortunately, the interpretation of the structur-
al features of the mantle inferred from seismol-
ogy is plagued by trade-offs and ambiguities.
Most global tomographic inversions do not in-

corporate seismic discontinuities in the mantle,
attributing any associated travel time anomalies
to volumetric heterogeneity. Similarly, most
waveform modeling uses globally averaged
one-dimensional (1D) seismic velocity refer-
ence models focusing on isolated regions with-
out consideration of the geographical variations
in velocity. This difference between seismic
inversion techniques makes it difficult to distin-
guish localized structure from broader anoma-
lies distributed along the ray paths. As a result,
there is poor understanding of the relation be-
tween large-scale mantle convection imaged by
seismic tomography and the smaller scale pro-
cesses, which may include chemical heteroge-
neity, solid-solid phase transitions, and partial

melting. The smaller scale processes produce
specific signatures in the fine-scale seismic ve-
locity field that is usually explored by wave-
form modeling.

One such mantle feature is a travel time
triplication attributed to a sharp (5), 2 to 3%
velocity discontinuity about 250 km above
the core-mantle boundary (CMB) (6 ). The
primary evidence for the triplication is an
additional phase, Scd, arriving between the
direct, S, and core-reflected, ScS, shear wave
phases in about 65° to 83° distance range (2,
7–9). The relative timing and amplitudes of
the three phases experience significant re-
gional variations. This intermittent triplica-
tion may be due to a laterally varying D0
discontinuity (10). Alternatively, the ob-
served spatial intermittance of the triplication
may be attributed to variations of the local
velocity gradients accompanying a small
('1%) velocity jump (11).

The triplication is strong or detectable
beneath the circum-Pacific region, which has
been associated with zones of faster-than-
average velocities at the base of the mantle
(Fig. 1), and it is weak or undetectable in
anomalously slow regions (12). This suggests
that the local structure can modulate the
strength of the triplication produced by a
possibly ubiquitous discontinuity. This poses
the question if it is possible to predict the
observed geographic patterns in the strength
and timing of the phases associated with the
triplication by using the structure inferred by
tomographic inversions.

We used Grand’s shear wave velocity
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model (13) to represent the global large-scale
seismic velocity structure. Tomographic in-
versions do not incorporate the Scd phase, so
that any travel time anomaly arising from a
D0 discontinuity is attributed to a volumetric
anomaly at the base of the mantle. Given this
nonuniqueness of the inferred seismic struc-
ture, we “refined” tomography models by
adding a discontinuity at a certain level and
compensated for its influence on travel times
by adjusting the local volumetric anomaly. A
physical model predicting the depth of the
discontinuity at any given location is needed.
A combination of dynamic and seismic mod-
eling suggests that a phase change is a more
likely cause for the D0 discontinuity than
thermal gradients or a chemically distinct
layer at the base of the mantle (11, 14).
Assuming the D0 discontinuity is caused by a
solid-solid phase transition, we used thermal
anomalies inferred from tomography models
(15) to predict its depth variations (16 ). The
velocity anomalies provided by the tomogra-
phy model are mapped onto a fine mesh to
ensure that the topography of the incorporat-
ed discontinuity is adequately resolved and
that each vertical column of the new mesh is
perturbed by adding a discontinuity and an
appropriate compensation (Fig. 2) (17 ).

To explore how well the described com-
posite model incorporating a first-order dis-
continuity superimposed on the tomography
reproduces seismic observations, we comput-
ed 2D synthetic waveforms (18) for a variety
of ray paths sampling D0 in five different
regions (Fig. 1). Differential travel times,
TScd-S and TScS-Scd, are obtained from the
synthetic waveforms and compared with the
corresponding observations. These differen-
tials provide important constraints on the D0
structure, characterizing the heterogeneity
and possible topography of the discontinuity
at the base of the mantle. We restricted the
analysis of the quality of our model predic-
tions to the TScd-S differential travel times
(19) and used the root-mean-square (rms)
misfit (20) to compare various models in
search of a range of the phase transition
characteristics most compatible with seismic
observations (21). We initially focused on the
observations for Alaska and Eurasia, because
extensive data sets are available for these
regions (22). These data sets are used to
calibrate our model, and the most consistent
model is then used to predict travel times in
other regions with observations of the D0
triplication. Comparisons of data for Alaska
and Eurasia with predictions of models incor-
porating phase transitions with various char-
acteristics allowed us to select a range of
models providing travel time predictions
most consistent with observations (Fig. 3).
The best predictions are provided by a model
incorporating a phase transition with gph ' 6
MPa/K and hph ' 200 km. Accordingly, we

will refer to the model characterized by these
parameters as the “preferred model.” Howev-
er, the variation of the residuals among the
models within the shaded region in Fig. 3 is
insignificant, and we cannot discriminate be-
tween different models with just one average
travel time residual. However, these models
can be distinguished by looking at the dis-
tance dependence of the predicted and ob-

served travel times. We explore the quality of
the fit to the observed TScd-S differentials
predicted by the preferred model and two
other models with the smallest travel time
residuals (Fig. 3). A two-step approach was
used, where we first obtained a least-squares
fit to the predicted differential travel times
(Fig. 4A) and then compared the fitted curves
to the observed travel times. Using this method,

Fig. 1. (A) Seismic observations of the D0 triplication: events (stars) and stations (triangles) used
in the study. Circles show surface projections of ScS bounce points for the paths that are considered
(21). The regions with strongly observed D0 triplication are shown by green contours and the names
of the corresponding seismic 1D reference models (34) are given next to the contours. The pink
squares in the inset indicate ScS bounce points beneath Central America for ray paths that do not
show any evidence for a D0 triplication (8). The three highlighted paths are used in Figs. 2 and 5B
to illustrate the sampled structure at the base of the mantle and its influence on the predicted
seismic waveforms. The background color represents the shear velocity in the lowermost 240 km
of the mantle (13). (B) Map of the elevation of the D0 discontinuity above the CMB predicted by
the preferred model. The elevations beneath Alaska and Eurasia are lower than suggested by the
respective 1D seismic reference models SYLO (243 km) and SGLE (290 km). The elevation of the
discontinuity beneath Africa and the central Pacific Ocean is likely underestimated, because the
large slow velocity anomaly there (;4%) implies either chemical heterogeneity or partial melt, and
our linear scaling between seismic velocity and temperature (15) may not be valid.
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we demonstrate that the preferred model pro-
vides a significantly better fit to the Eurasian
and Alaskan data (Fig. 4B) than a model with a
phase boundary at a constant depth (Fig. 4C) or
a phase boundary corresponding to a negative
Clapeyron slope (Fig. 4D). The other two mod-
els have small travel time residuals (Fig. 3) but
predict differential travel times that are incon-
sistent with the data for Eurasia and Alaska.
Moreover, the preferred model provides a sat-
isfactory fit to the travel times observed for
paths beneath India and the Indian Ocean (Fig.
4E). The predictions of our preferred model are
in better agreement with the Indian data than
are the travel times corresponding to the 1D
seismic reference model originally used to ex-
plain the data (7).

The structure beneath Central America is
peculiar in that the observed travel time pat-
terns vary substantially over relatively short
distances. According to Kendall and Nangini
(8), the travel times for the southern Carib-
bean can be approximated by a 1D reference
velocity model with a 2.75% velocity jump
250 km above the CMB, whereas the travel

times for the northern Caribbean can be ap-
proximated by a model with a 2.45% velocity
jump 290 km above the CMB (Fig. 1, inset).
Our preferred model reproduces the observed
regional variations in differential travel times

in the Caribbean on par with the respective
1D reference models (Fig. 4F) that were con-
strained by the waveform analysis in addition
to travel time picks (8).

We used our preferred composite model to

Fig. 2. Shear velocity cross sections along the ray paths highlighted in Fig. 1.
(Left) Event 940808 (8) to station SHW (path C1); (middle) event 940110
(8) to station FRB (path C2); (right) event 840425 (33) to station PFO (path
P1). (A) Cross sections through Grand’s tomography model (13). Direct (S)
and core-reflected (ScS) rays are shown. (B) Perturbing a vertical column to
incorporate a discontinuity using cross section a–a9 indicated in (A) as an
example. The gray shading shows the layers of the tomography model (13).
Dotted line shows PREM (29); dashed line shows the block anomalies (PREM

values with added tomography velocity perturbations); the red solid line
shows the final profile obtained by adding a discontinuity and a compen-
sating negative gradient at the base of the mantle (17). (C) Final composite
model (perturbations with respect to PREM) for the region marked in (A).
The grid lines of the fine mesh are shown (every other line is plotted
horizontally, and one in every 10 is plotted vertically) and the phase
boundary is indicated by the white line. The phase transition in (B) and (C)
is characterized by hph 5 200 km and gph 5 6 MPa/K.

Fig. 3. TScd-S differential travel time residuals be-
tween data for Alaska and Eurasia, and predictions
of models with various phase change characteris-
tics (20). The shaded region marks the range of
models providing the best fit to the data. Models
within this region have approximately the same
average elevation of the phase boundary above
the CMB. They predict TScd-S with an average
residual in the range of 1.8 to 3.4 s. The preferred
model with the smallest residual is indicated by a
cross. The models marked with solid circles are
explored further (Fig. 4).
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