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The Permo-Triassic continental large igneous provinces (LIPs) of Eurasia linked in to orogenic systems in decay.
Their bulk appearance varies from the massive flood-basalts and (ultra)mafic intrusives to the groups of coeval,
widely spread, diverse intrusions and extrusions of the Scattered Igneous Provinces (SIPs). In the interval from
the demise of the orogens to the inception of the LIPs and SIPs, diverse ore deposits were formedwhich, depending
on the predominant expression of the hosting system, have been interpreted as orogen-related and LIP- or SIP-
related. In the case of the voluminous (ultra)mafic complexes, amantle origin is indicated. This leads to the concept
of active mantle plumes issuing from the core–mantle boundary in view of the exceptional volumes and the high
temperature inferred to melt the source complexes. However, the substantial volumes of fluids that entered the
sub-continental mantle on prior subduction of oceanic lithosphere lowered the solidus temperature and modified
the composition of the sub-continental mantle. As a consequence, the conditional high temperature is superfluous.
In this context, the setting of the JiaodongProvince and the evolution of the hostingNorth China Craton suggest that:

1 the introduction offluids during prolonged subductionof oceanic lithosphere can alsomodify the rhe-
ology of the deep lithosphere; this reinforces the role of plate tectonic processes in the generation and
the in-and extrusion of voluminous, mantle-derived melts;

2 the prolific gold deposits could form because of the stalled, subducted Pacific lithosphere slab with
its oxidizing potential and its position within the mantle transition zone; as elsewhere, continent-
scale, translithospheric strike-slip deformation played an indispensable role in decompression and
in the migration of melts, fluids, volatiles and metals;

3 orogenic gold deposits can form independent of orogenesis; should, after all, a relevant orogen be
delineated in the coastal belt of eastern Asia, the question arises concerning the dependence of
orogenic gold deposits on the nature of an orogen.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Ever after the seminal paper by Dobretsov (1997), Asia has been the
principal scene of inferred mantle plumes as the sources of the conti-
nental, Late Paleozoic Siberian, Tarim and Emeishan Large Igneous
Provinces (LIPs; Fig. 1). At about the same time, Doblas et al. (1998)
drew attention to the Late Carboniferous–Early Permian volcanism in
Western Europe and Northwest Africa as a large igneous province in a
complex framework of collapse of the Variscan Orogen, its final disrup-
tion bywrench faulting, the release of heat that had accumulated below
Pangea, and a superplume. In view of the widely spread distribution of
the volcanic complexes Doblas et al. (1998) coined the term ‘scattered
igneous province’. Dobretsov et al. (2010) formally recognized the
Early Permian volcanics in Western Europe as the ‘Central European
Large Igneous Province’ and summarized the diverse ore deposits gen-
erally associated with large igneous provinces: ‘magmatic Cu–Ni–Pt
and Fe–Pt; hydrothermal Ni–Co–As (±Ag, U, Au), Au–As, Ag–Sb, Au–
Hg, Sb–Hg and stratiform Cu (copper-bearing sandstones and shales
enriched in Co, Ni, Ag, Pt)’. However, inWestern Europe, the hydrother-
mal types, of Late Paleozoic age, are generally viewed as exponents of
the Variscan Orogen (e.g., Marignac and Cuney, 1999; Spiering et al.,
2000; Bouchot et al., 1997, 2005; see also De Boorder, 2012, 2014). A
striking example of this ambivalence is represented by the ‘orogenic’
gold deposits in the French Massif Central (Bouchot et al., 1997, 2005)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.oregeorev.2014.04.007&domain=pdf
http://dx.doi.org/10.1016/j.oregeorev.2014.04.007
mailto:H.deBoorder@uu.nl
http://dx.doi.org/10.1016/j.oregeorev.2014.04.007
http://www.sciencedirect.com/science/journal/01691368


Fig. 1. Schematic overview of the distribution of Early Permian–Triassic large igneous provinces of Eurasia and the Jiaodong gold district. Sources:Western Europe— Benek et al. (1996), Breitkreuz and Kennedy (1999), Vinx (1982), Baumann et al.
(1991), Von Seckendorff et al. (2004), Schmidberger and Hegner (1999), Vavra et al. (1999), Schaltegger and Brack (2007), Henk et al. (1997), Mulch et al. (2002), Rottura et al. (1998), Hansmann et al. (2001), Tribuzio et al. (1999), Monjoie et al.
(2001), Bussy et al. (1998),Montanini and Tribuzio (2001), Cocherie et al. (2005), Fernández-Suárez et al. (2000), Dias et al. (1998). Southern Tianshan— Seltmann et al. (2011, 2012), Konopelko et al. (2007, 2009),Wang et al. (2009), Laurent-Charvet
et al. (2003), De Jong et al. (2009), Qin et al. (2011), Su et al. (2011), Tian et al. (2010), X. Zhang et al. (2011).Northern Eurasia— Timmerman et al. (2009), Reichow et al. (2009), Kuzmichev and Pease (2007), Ledneva et al. (2011), Ivanov et al. (2009),
Alexandre et al. (2004). Early Permian gold event — Spiering et al. (2000), Bouchot et al. (2005), Morelli et al. (2007), Seltmann et al. (2012), Mao et al. (2004), Naumov et al. (2010).
Modified after De Boorder (2014); inset modified from Nikishin et al. (2002).
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whichwere formed at the same time as the (ultra)mafic and felsic com-
plexes of the Central European Large Igneous Province (De Boorder,
2012). Other examples are the nominal gold and nickel–copper associ-
ations of the Southern Tianshan orogen and the Tarim LIP (Mao et al.,
2008a; Pirajno et al., 2008) and of the Western Altaid orogen with the
Siberian LIP (Barnes et al., 2006; Borisenko et al., 2006; Li et al., 2009;
Spiridonov, 2010). Recently, Seltmann et al. (2012) inferred the extent
of the Tarim LIP with the intervention of a Tarim mantle plume as far
as the Kyzyl Kum region and the Muruntau gold district of Uzbekistan.
The relations are further complicated by the interpretation of the
above gold-dominated deposits as ‘intrusion-related’ (De Boorder,
2012) instead of ‘orogenic’ (e.g., Bierlein and Crowe, 2000; Bouchot
et al., 2005) in the sense of Groves et al. (1998, 2009).

In Central Europe, Central Asia and Western Siberia an orogen in
decay gave way to the in- and extrusive complexes of a continental,
scattered or large igneous province, at the time of formation of compa-
rable, diverse ore deposit types. In all cases a mantle plume has been
inferred. The apparently coherent orogen-lip sequences then raise the
question in which of the two settings these ore deposits were really
formed. The temporal overlap of the orogen's tail and the inception of
the large igneous province touches upon the sources and mechanisms
of concentration of themetals and, fundamentally, the processes under-
lying the formation of continental large igneous provinces (De Boorder,
2014). The related controversies concerning mantle plumes and
lithosphere plates have been presented extensively in Foulger (2010)
and its reviews (MantlePlumes, 2013) and need not be summarized
here. However, the widely recognized process of lithosphere delamina-
tion is generally the preferred cause of large igneous provinces as an
alternative for the plume mechanisms. At the same time, it is also the
most queried hypothesis because of the allegedly too small magma
volumes to form a large igneous province (e.g., Arndt and Christensen,
1992; Begg et al., 2010; White and McKenzie, 1995). On the other
hand, the same kind of (ultra)mafic melts as those of the seemingly
autonomous large igneous provinces may form and reach the surface
as flood basalts in the course of orogenic collapse (Dewey, 1988). The
igneous rocks then expose a relation of the mantle with a decaying
orogen or, in a more general sense, with a disintegrating segment of
the continental lithosphere, at the time of formation of several types
of ore deposits within the by then defunct orogen. So far, the recognized
mechanisms or processes involved are the inferred loss of an orogenic
root and/or detachment of a subducted slab, slab rollback, and dissec-
tion of an orogen by translithospheric strike-slip deformation. The
tectonic framework is characterized by spreading extension of the
lithosphere. The uncertainties affect the controversy concerning plates
and plumes and the understanding of several types of ore deposits in
orogenic domains. These are generally thought to have evolved in
close association with orogenic processes but are also seen in relation
with the LIP complexes. In order to refine these concepts towards a fur-
ther focus on the metallogenic aspects of mantle and crust dynamics,
the Mesozoic evolution of the North China Craton could possibly help
because of the evidence of the partial destruction of its cratonic root,
the inherent ascent of asthenospheric melts and fluxes to lithosphere
levels, the association with a Giant Igneous Event, and the abundance
of associated ore deposits. Therefore, in this paper, I discuss principal
aspects of the Late Paleozoic orogen-lip sequences in Eurasia and their
ore deposits and turn to the current hypotheses concerning the
Jiaodong gold district and its setting in the North China Craton, in a fur-
ther contribution to the resolution of the ‘plume or plate’ controversy
and its bearing on metallogeny.

2. The Variscides and the Central European LIP

The Mid- to Late-Paleozoic Variscides extended from the Baltic
Shield (East European Craton) and the southern Urals in the east to
the southern Appalachians in the west, following rifting in northern
Gondwana, northward migration of Gondwana fragments and collision
between Laurussia and Gondwana. During the Late Carboniferous and
the Early Permian, the orogen may have been affected by gravitational
collapse (Echtler and Chauvet, 1991–1992; Echtler and Malavieille,
1990; Henk, 1997, 1999; Malavieille et al., 1990; Ménard and Molnar,
1988) and by dextral, intracratonic, translithospheric, strike-slip defor-
mation (Fig. 2) between the Southern Appalachians in the west and
the Urals in the east (Arthaud and Matte, 1977; Bard, 1997; Franke
et al., 2011; Henk, 1997, 1999; Ziegler, 1986, 1989; Ziegler et al.,
2006). The dynamic framework was dominated by the translation of
Gondwana relative to Laurussia and the closure of the Paleotethys
Ocean. Most dated hydrothermal ore deposits in the by then defunct
Variscan domain were formed at that stage. These include meso- and
epizonal gold deposits (Bouchot et al., 1997, 2005; Marignac and
Cuney, 1999), tin–tungsten–copper deposits (Chen et al., 1993; Snee
et al., 1988) skarn deposits with copper and gold concentrations
(Romer and Soler, 1995; Spiering et al., 2000), Ni–Co–As (Paniagua
et al., 1988) and complex mercury-dominated deposits (Krupp, 1989),
all currently exposed in and around the crystalline massifs of western
and central Europe, together with a hidden molybdenum–tungsten
porphyry in western Poland (Bula et al., 2001). The association of
the diverse mineralization in the gold districts of northern Spain
with strongly altered, locally banded, hornblende gabbro stocks
was pointed out by Suárez and Corretgé (1987). This association is
a prominent indication of the involvement of hydrous mafic magmas. A
comparable association, of gold-bearing quartz veins and lamprophyres
was reported by Chalier et al. (1994) from the French Massif Central. It
was considered enigmatic because of the mutual intersections of quartz
veins and lamprophyres (Bouchot et al., 2005). Further north, a relation
was found by Seifert (2008) between volatile-rich lamprophyric and
rhyolitic intrusions with diverse ore deposits in the Erzgebirge of the
Bohemian Massif in Central Europe. The lamprophyres were thought to
be indicative of melting of a metasomatically enriched mantle. This
detailed, relatively local study converges with the earlier observations
by Turpin et al. (1988) concerning the sources of the Late Carboniferous
to Early Permian lamprophyres throughout the Variscan orogen. In this
regional project the lamprophyres in general were attributed to melting
of a mantle enriched by subduction-related processes during recycling
of crustal material. Comparable ore deposit types and settings are also
encountered in northeastern China.

Between ca. 300 and 280 Ma, igneous complexes, intrusive and
extrusive, of both felsic and (ultra)mafic composition formed within
the Variscan domain and its adjacent platforms (see De Boorder,
2012). The large volcanic complexes in the subsurface of the North
German Basin and in the Oslo Rift were interpreted as plateau basalts
by Ziegler (1990) and Sundvoll et al. (1990), respectively. The ultra-
mafic and mafic rocks of the Ivrea–Verbano complex in northern
Italy were also interpreted as a flood basalt complex by Stähle et al.
(2001) in view of their volumes. Calc-alkaline affinity, enrichment
in LILE relative to Nb, Ta and Ti in fragments of a deep-seated layered
ultramafic complex in the subsurface of the FrenchMassif Central are
viewed as subduction-related signatures (Féménias et al., 2003) and
traced in coeval complexes elsewhere in Europe (Benek et al., 1996;
Cortesogno et al., 1998; Lorenz and Haneke, 2004; Schmidberger and
Hegner, 1999; see also De Boorder, 2012). In the Alps of Switzerland and
Italy, lower crustal (ultra)mafic complexes of Permo-Carboniferous age
have been exhumed in the course of the Alpine orogeny. Such complexes
were inferred by Schaltegger and Brack (2007) as a heat source of
granites and felsic volcanics emplaced in pull-apart basins along both
the southern and northern margins of the defunct Variscan Orogen. The
Early Permian setting is summarized in Fig. 3A.

3. The Southern Tianshan and the Tarim LIP

The Southern Tianshan extends from the southern Urals eastwards
to the eastern tip of the Tarim Basin, between the Kazakhstan, Yili and
Junggar Blocks in the north and a string of lithosphere blocks or



Fig. 2. Distribution of the complexes of the Central European Scattered or Large Igneous Province.
Adapted from Doblas et al. (1998), and modified after De Boorder (2014).
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microcontinents to the south, rifted off the northernmargin of Gondwana
and comparable to the Gondwana-derived fragments constituting the
backbone of the Variscides to the west (Stampfli and Borel, 2002; Von
Fig. 3. A Schematic summary of the inferred post-Variscan setting. For legend see panel B.
B. Legend for panel A and Figs. 5, 7, 9 and 11.
Raumer, 1998; Von Raumer et al., 2003; Wilhem et al., 2012). From
west to east these are the largely hidden Turan, Karakum, and Tarim
blocks and the North China Craton which extends as far as the Pacific
Ocean. These blocks are bounded to the north by an east–west-striking
belt of deep-reaching strike-slip deformation (Fig. 4) largely taken
up in the Southern Tianshan Orogen and extending westward to
the Tornquist–Teisseyre Zone which separates the Baltic Shield
from Phanerozoic Central Europe. This deformation belt is known as
the Scytho-Turanian Fault which to the east is thought to extend to
the Solonker Suture (Natal'in and Şengör, 2005).

To the south of this belt, the Tarim Basin, with over 10 km of
Phanerozoic sediments and volcanics (Tian et al., 2010) overlying the
Precambrian complexes of the Tarim Block, hosts the Permian volcanic
complexes of the Tarim Large Igneous Province (Fig. 5). Coeval igneous
complexes in the surrounding regions have been advocated to formpart
of this district (e.g., Konopelko et al., 2007, 2009; Zhang and Zou, 2013a,
Fig. 4. Distribution of the Tarim Large Igneous Province in the northern Tarim Basin, the
flood-basalts of the Tuha Basin, with ultra(mafic) and A-type granite complexes.
Modified after Zhang and Zou (2013a,b).
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Fig. 5. Schematic summary of the inferred setting of the Tarim Large Igneous Province. For
legend see Fig. 3B.
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b; Zhou et al., 2009) despite the wide-ranging variety of the rocks. The
knowledge of the lithologies and the extent of the volcanics in the
Tarim Basin is based on outcrops along the northern margin, industrial
drill cores and seismic and magnetic surveys. The dominating flood
basalts, with a thickness in excess of 2500 m and covered by some
5 km of post-Permian sediments in the North Tarim uplift (Qin et al.,
2011), generally have OIB-like affinity attributed to asthenospheric
sources. Diversity is ascribed to heterogeneous mantle sources
(e.g., Zhou et al., 2009). Cores from the North Tarim Uplift show a
picrite–basalt–rhyolite sequence (Tian et al., 2010). Here, rhyolite is
found to have originated by fractional crystallization of basalt melts
and by assimilation of crustal complexes. Geochronological estimates
of rhyolite units, in the lowest and highest levels of the ca. 1000 m
sequence investigated deliver ages of 290 ± 4.1 and 286 ± 3.3 Ma,
respectively. In addition to the bimodal volcanic complexes there are
layered and zoned intrusions of gabbro–norite, A-type granitoid
plutons, ultramafic complexes and dyke swarms.

Zoned gabbro–norite intrusions are known in the eastern Tianshan.
They have been interpreted as Alaskan-type intrusions associated with
the flood basalts (Mao et al., 2008a; Pirajno et al., 2008) but their origin
is controversial.Magmatic hornblende in the gabbroic complexeswould
indicate crystallization from a hydrous magmawhich tends to set them
apart from the Tarim flood basalts (Wan et al., 2013; Wilhem et al.,
2012). Chemical characteristics in the igneous rocks of the eastern
Tianshan are explained by modification of the underlying mantle
domains during earlier subduction (e.g., Qin et al., 2011; Su et al., 2011).
According to Su et al. (2012 and references therein), subduction-
induced mantle heterogeneity beneath the Central Asian Orogenic Belt
is probably of regional extent.

From studies of Permian plutonic complexes, A-type syenite-
granites and coeval (ultra)mafic intrusions in the northern margin of
the Tarim Basin, and from associated dyke systems and plutons and
dyke swarms in the Southern Tianshan and the Junggar Basin to the
north, Zhang and Zou (2013a,b) suggested the existence of two different
mantle source domains. The Tarim domain, south of the South Tianshan
suture, produced magmas from the Tarim Craton's lithospheric root
after long-term interaction with the surrounding mantle (‘enriched’
continental lithospheric mantle) followed by melts from astenospheric
sources leading to the formation of the (ultra)mafic Bachu Complex in
the northern margin of the Tarim Basin. In the Tianshan domain, north
of the South Tianshan suture, magmas were produced from its conti-
nental lithospheric mantle after preceding subduction-related meta-
somatism. At the same time, Zhang and Zou (2013b) argued the
lowering of melting temperature of ‘time-integrated enriched’
continental lithospheric mantle with reference to the study by Xu
(2001) concerning the destruction of the root of theNorth China Craton.
The magmas of mafic dyke swarms, (ultra)mafic complexes and the
continental flood basalts to the north of the Southern Tianshan Suture,
in the western Central Asian Orogenic Belt (CAOB), were attributed to
metasomatized mantle sources, presumably generated by subduction
of the Turkestan Ocean. In both domains the heat source was attributed
to one and the same mantle plume.

The generally observed lithological diversity is also exposed by the
study of the ore deposits in the Southern Tianshan belt. In the ultramafic
host complex of the Baishiquan Ni–Cu deposit, in the eastern part of the
belt, the presence of ubiquitous hornblende and biotite suggests a
parent hydrous magma (Chai et al., 2008). M. Zhang et al. (2011)
found that the host complex of the Huangshandong Ni–Cu deposit, at
some 50 km from Baishiquan, has a tholeiitic composition different
from the alkaline basalts of the Tarim basin andmore akin to the coeval
volcanics in the Tuha Basin to the north. Gao et al. (2013) concurred
with the above views of Chai et al. (2008) on the Baishiquan deposit.
Sun et al. (2013) believed that the Huangshandong deposit formed
from basaltic magmatism related to post-subduction delamination and
asthenosphere upwelling instead of a deep-seated plume. Deng et al.
(2014) found that the intrusion hosting the Huangshandong deposit is
enriched in large ion lithophile elements and depleted in high field
strength elements relative to N-MORB, and high Th/Yb ratios, suggest-
ing that the primary magma of the intrusion was derived from partial
melting of a metasomatized mantle source, modified by subducted
slab-derived melt/fluid. The differences between the (ultra)mafic
magmas to the south and to the north of the South Tianshan Suture
may then be largely due to subduction metasomatism of comparable
magmas to the north of the Suture. The geochemical diversity of the
igneous complexes is thus increasingly clarified. The distribution of
the ore deposits, dominantly Ni–Cu deposits associated with the
gabbroic plutons, and the gold deposits in the deep-reaching shear
zones between the two prominent mantle domains (e.g., Mao et al.,
2008a) raise the problems of emplacement of the igneous complexes be-
yond the adoption of an active mantle plume (e.g., Sun et al., 2013). The
solutionmaywell have to be sought in the dynamics behind the Permian
shear zones that dissected the South Tianshan orogen (Charvet et al.,
2007; Laurent-Charvet et al., 2003; Pirajno, 2010) and the associated
extensional domains as represented by pull-apart basins (De Boorder,
2012; De Jong et al., 2009; Pirajno, 2010; Wang et al., 2009).

Whereas an active mantle plume is still seen as the source of melts
from the asthenosphere, the (ultra)mafic igneous complexes along the
northern margin of the Tarim Basin and within the Tianshan domain
are increasingly regarded as the result of partial melting of a
subduction-modified subcontinental mantle (Fig. 5). In addition,
(partial) destruction of the root of the Tarim Craton may have oc-
curred as a result of its long-term compositional modification through
interaction with the surrounding mantle. The emplacement of both
ore deposits and igneous complexes may have depended on the deep-
reaching shear zones and their associated extensional domains, consid-
ering that melting of the mantle complexes did not depend on the nor-
mally required high temperatures attributed to active mantle plumes.

4. The Emeishan LIP

The Emeishan Large Igneous Province in southwestern China
extends ca. 600 km fromnorth to south along the Jinshajiang–Ailaoshan
Sutures (Fig. 6), (see Jian et al., 2009b),which forms thewestern limit of
the province and from where the igneous rocks extend some 700 km
eastward on the Yangtze Craton. Comparable complexes in northern
Vietnam have also been attributed to the Emeishan LIP (Anh et al.,
2011; Chung et al., 1997; Hoa et al., 2008; Kamenetsky et al., 2012;
Wang et al., 2007). According to Shellnutt et al. (2010), this igneous
province has been viewed as one of the best illustrations of a mantle
plume production. Apart from the (ultra)mafic lithologies, domal uplift

image of Fig.�5


Fig. 6. Distribution of the Emeishan Large Igneous Province in relation to the principal
sutures and fault zones of the region.
Modified after Jian et al. (2009b), Wang et al. (2007) and Kamenetsky et al. (2012).
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of the region appears to have been an important argument in favor of a
plume origin. This aspect is, however, still debated (He et al., 2010;
Peate and Bryan, 2008). The age of the (ultra)mafic complexes is
estimated at about 260 Ma (e.g., He et al., 2007). Zhou et al. (2008)
distinguished two magma series, one comprising of high-Ti basalts
and Fe-rich gabbroic and syenitic intrusions, and the other of low-
Ti basalts and (ultra)mafic intrusions. Each has specific ore types,
the first with giant Fe–Ti–V oxide ore deposits, the second with
Ni–Cu–(PGE) sulfide deposits. The authors suggested that the two
series resulted from melting of a heterogeneous mantle plume.
Kamenetsky et al. (2012) also found low-Ti and high-Ti endmembers.
Their investigation ofmelt inclusions in primitive olivine suggested that
numerous parental magma batches were involved in the evolution of
the complex of more differentiated basalts. Mantle sources for the
low- and high-Ti end-members were suggested to have resided in
peridotite and garnet pyroxenite, respectively. The similarity of Sr and
Nd isotopic compositions was thought to represent a source in the sub-
continental lithosphere rather than the convective asthenosphere or a
deep mantle plume.

The tectonic setting of the Emeishan LIP is dominated by several
north–south striking sutures in a complex, narrow bundle of thrusts
and strike-slip faults with a dominantly sinistral sense of displacement
along the current western margin of the province. Here, the very com-
plex Jinshajiang–Ailaoshan Suture marks the closure of the Paleotethys
Ocean along the western margin of the Yangtze Craton (Pirajno, 2013;
Xiao et al., 2008). According to Xiao et al. (2008), OIB-type mafic volca-
nics are widely spread in the suture zone and involve a passive margin
succession. Chemically and isotopically these volcanics compare to the
complexes of the Emeishan LIP to the east. Xiao et al. (2008) attributed
the Emeishan LIP to a mantle plume which caused the opening of the
Jinshajiang Paleotethys Ocean in the Carboniferous and continued its
activity along the western margin of the Yangtze Craton till the end of
the formation of the Emeishan LIP. However, further geochronological
studies by Jian et al. (2009a,b) have led to more detailed understanding
of the region.

The temporal framework of the evolution of the western Yangtze
Craton was reinforced by Jian et al. (2009a,b) with SHRIMP zircon dat-
ing of rock complexes in the various sutures and microcontinents
(blocks). They reconstructed a Devonian–Permian plate tectonic cycle
for the opening and closure of the Paleotethys Ocean. The final subduc-
tion of the Paleotethys Ocean is defined between 270 and 264 Ma with
formation of the Changming–Menglian ophiolite along the main
Paleotethys Suture and arc volcanism which partially overlapped in
time with the formation of the Emeishan LIP between ca. 267 and
256Ma. At this stage, the ensuing Paleotethys Orogen and the Emeishan
Continental Large Igneous Province had a similar extensional history
possibly controlled by a common tensional stress regime along a pre-
existing tectonic boundary. Westwardmovement of the Yangtze craton
was thought to have caused lithospheric pull-apart structureswhich the
authors visualized with the model of Anderson (1994). Jian et al.
(2009b) arrived at the association of the continental flood basalt
province with a major orogeny in terms of the plate tectonic evolution
of the Paleotethys Ocean and its continental framework. They attributed
the generation of the Emeishan magmas to plate tectonic forces rather
than the impact of amantle plume. Kamenetsky et al. (2012) converged
with this conclusion; they did not find evidence for the involvement of a
mantle plume either.

As in the other continental, (ultra)mafic large igneous provinces,
deposits of Ni–Cu and Ti–V are clearly associated with the igneous
rocks of the Emeishan complexes. Interestingly, Zhang et al. (2006)
found particles of native gold and native copper in olivine from picrite.
The authors suggested, with reference to Hu et al. (2004), that gold de-
posits of Mesozoic age had formed in the Emeishan LIP. However, the
account by Hu et al. (2004) deals with the porphyry deposits along
the Red River–Jinshajiang strike-slip fault, which formed later in associ-
ation with mantle-derived alkaline intrusions between ca. 40 and
30 Ma. In the Emeishan region itself the native gold and copper in
olivine do illustrate a relation of themetals with the Late Permian ultra-
mafic melts. Burnard et al. (1999) reported on fluids, with both mantle
and crustal characteristics, in three shear zone-hosted gold deposits
in the Ailaoshan Gold Belt. 40Ar/39Ar estimates arrived at an age of
~33 Ma for the Daping ores which may represent reworked concentra-
tions (Sun et al., 2009). Other ore deposits of gold and copper allegedly
related to complexes of the Emeishan LIP have been reported only from
northern Vietnam (Hoa et al., 2008). These include Cu–Ni, Mo and
Au–As–Sb–Hg associations in two major, NW–SE-striking rift
zones, with estimated 40Ar/39Ar ages between 252 and 228 Ma.
Whereas a relation between these rift structures and the movements
along the Ailaoshan–Red River–Jinshajiang strike-slip fault zone stands
to reason, the tectonic control of the ore deposits of northern Vietnam
merits further investigation.

In addition to the proposals of active mantle plumes, documented,
different mechanisms have recently come forward involving more
shallow sources and correlation of the Emeishan Large Igneous Province
with the aftermath of the Southwest Asian Paleotethys Orogen (Fig. 7)
and a direct association between gold and copper with ultramafic
complexes.

5. The Western Altaids and the Siberian LIP

The Western Altaids constitute the basement of the West Siberian
Basin between the Urals and the Baltic Shield to the west and the
Siberian Shield to the east. Its nature is inferred frombore holes, magne-
tometry and gravimetry, and outcrops around the Basin. The flood
basalts of the Siberian LIP generally rest unconformably on theWestern
Altaids in which granitoid rocks have been found with Late Carbonifer-
ous and Permian ages (Aplonov, 1995) and on earlier Paleozoic sedi-
ments on the Siberian Shield (Czamanske et al., 1998). The basement
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Fig. 7. Schematic summary of the inferred setting of the Emeishan Large Igneous Province in
relation to the Yangtze Craton and the Southeastern Asian Palaeotethys Orogen. For legend
see Fig. 3B.
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of the West Siberian Basin is generally interpreted in terms of two
oroclines between the Baltic Shield and the Urals to the west and
the Siberian Shield to the east, including the Kazakhstan Block
(Seltmann et al., 2014; Şengör and Natal'in, 1996, 2007; Yakubchuk
et al., 2005).

The principal outcrops of the flood basalts are on the Siberian Shield.
Comparable rocks have been recovered from bore holes in the West
Siberian Basin and have been observed in the Urals and as far to the
northeast as the New Siberia Islands (Kuzmichev and Pease, 2007)
and Kolyuchinskaya Bay (Ledneva et al., 2011) on the Arctic coast
(Fig. 1). To the south, they are known in the Kuznetsk Basin (Fig. 1).
The province comprises of dominant low-Ti and subordinate high-Ti
oceanic island basalts, dykes, sills and (ultra)mafic and felsic intrusives.
The majority of the flood basalts have low concentrations of HFS
elements relative to LIL elements (Ivanov, 2007). In continental basalts
these patterns may point to sudden melting of arc or backarc sources
trapped under a continental-plate suture (Puffer, 2001). Major basalt
emissions on the Siberian Craton occurred at about 250 Ma and
240 Ma with contemporaneous granitic magmatism which continued
into the Late Triassic. Earlier, minor basaltic pulses should not be
excluded (Ivanov et al., 2013). In view of the large extent of the volca-
nics, the tectonic framework of the Siberian LIP is much a matter of
continent-scale deformation. Its elucidation depends on the interpreta-
tion of continent-wide potential fields and on protracted, localized field
work.

A relation between magmatism and deep-reaching strike-slip faults
has been inferred as far as the northern margins of the Siberian Craton
and the Taimyr Peninsula (Duzhikov and Strunin, 1992) and to the
south in Central Asia (Buslov et al., 2003, 2004, 2010; Vladimirov
et al., 2008). The interpretation of the magnetic anomaly map of the
West Siberian Basin by Allen et al. (2006) portrays the rift structures
in the basement of the Basin as pull-apart basins along deep-reaching
strike-slip faults. In the reconstruction of the transformation of the Sibe-
rian Craton along the Laurussianmargin by Sears (2012, and references
therein), the British Columbia Transform plays an important role. A con-
nection between the strike-slip deformation inferred in the West Sibe-
rian Basin and the British Columbia Transfer Shear should not be
excluded (De Boorder, 2014). Whereas the deep-reaching pull-apart
structures would clarify the relatively small occurrences, as in the Kuz-
netsk Basin, without much opposition, the vast volumes on the Siberian
Craton and in theWest Siberian Basin seem to require different or addi-
tional processes.
In the explanations of the sources of the vast volumes of (ultra)mafic
flood basalts and intrusives the Siberian LIP is still at the center of the
debate that pits the active mantle plume concept against plate tectonic
mechanisms (e.g., Foulger, 2010; MantlePlumes, 2013). Prominent
issues concern the volumes of the igneous complexes, the temperatures
required to melt the mantle source rocks and the uplift of the litho-
sphere. Many authors have preferred an active mantle plume as the
source of adequate temperatures. However, Ivanov (2007) and Ivanov
et al. (2008) have invoked the role of earlier subduction of water as
an agent to lower the melting temperatures of mantle complexes on
the basis of the occurrence of primarymica and amphibole in the volca-
nic and plutonic rocks and experiments on high water capacity of the
mantle transition zone. Gladkochub et al. (2010) advocated a similar
mechanism in combination with a mantle plume for the mafic com-
plexes in the southern part of the Siberian Shield. Saunders et al.
(2007) invoked mantle delamination processes in support of explana-
tions of the very large volumes of the Siberian LIP, following Elkins-
Tanton and Hager (2000) and Elkins-Tanton (2005). Whereas plume-
relatedmagmas obtain their mantle signature only in the upper mantle
(White, 2010), the scrutiny by Class (2008) of petrological, geochemical
and geophysical approaches to mantle dynamics emphasized the need
for their integration to resolve the uncertainties in the dynamics of
the mantle in order to ascertain the existence of active mantle plumes
emanating from the core–mantle boundary. The diagnostic strength of
uplift or subsidence of the lithosphere in relation to mantle plume
activity appears to have been reduced with the studies of Burov and
Guillou-Frottier (2005) and Sobolev et al. (2011) which suggested
that uplift is not necessary and that either could occur. In western
Siberia if not western Asia, the vast production of (ultra)mafic magmas
seems to require proportionate processes over and above the formation
of the rift basins that decorate the translithospheric strike-slip shears.
Enlarging the scale of the problem to continental proportions, namely
to Pangea, a system of multiple plumes and a superplume has been
advocated (e.g., Doblas et al., 1998; Dobretsov, 1997). Recently, however,
Gutiérrez-Alonso et al. (2008) formulated the amalgamation of Pangea
in terms of the closure of the Paleotethys Ocean, involving prominent,
translithospheric, transcurrent, compressional strike-slip deformation
in the central parts of the growing supercontinent and the evolution of
extensional structures in the marginal parts. De Boorder (2014) pro-
posed the West Siberian Basin, also with reference to Aplonov (1995),
as one of these marginal extensional intracontinental domains between
the Siberian and Baltic Cratons, superimposed on the belt of the amal-
gamating Western Altaids and its translithospheric, transcurrent
deformation (Fig. 8). Paleozoic metasomatism of the subcontinental
mantle of the Siberian Craton and its surroundings by subducted fluids
(see Gladkochub et al., 2010; Ivanov, 2007; Ivanov et al., 2008), lowering
themelting temperature, could have been an important process for later
massive melting.

As set out in the Introduction, the formation of the Early Permian
metal deposits in the Variscides and the Southern Tianshan at the
same time as the orogenic domains and their neighboring platforms
were invaded and flooded by the magmas of the Central European
and Tarim LIPs, suggests interaction of the (ultra)mafic LIP magmas
with the remnants of the orogens. Such a relation appears reinforced
by the indications of earlier subduction-related metasomatism of the
subcontinental mantle, which in turn provided for large-scale melting
and deep-seated production of fluxes in the subcontinental mantle
upon decompression along translithospheric strike-slip deformation
(Fig. 9) during or after thinning of the lithosphere. The notably large-
scale, semi-synchronous events require a trigger mechanism that most
probably has to be sought at the scale of the lithosphere plates. However,
because of erosion, subsidence, sedimentation and younger orogenesis,
the relevant depth levels of the Late Paleozoic complexes are only acces-
sible to a limited extent. Therefore, further understanding is pursued in a
potentially comparable system of largely Mesozoic age centered on the
North China Craton.
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Fig. 8. Schematic representation of the formation of the Pangaea Supercontinent in rela-
tion to the closure of the Palaeotethys Ocean with southern Pangaea subducting to the
north below northern Pangaea, adapted from Gutiérrez-Alonso et al. (2008) who coined
the term ‘self-subduction’. Theirmodel includes transpression in the core of the supercon-
tinent and extension in the periphery consistent with the translithospheric strike-slip
zones in the central parts and the West Siberian rift in the northern margin.
Modified after De Boorder (2014).
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6. The North China Craton, the Jiaodong Gold District and the Giant
Igneous Event

6.1. The partially thinned Craton

The Early Cretaceous Jiaodong gold district is part of a much larger
metallogenic province in eastern Asia which developed during the
breakdown of the lithospheric root of the eastern part of the North
China Craton. The causes and mechanisms of the partial loss of the
root and relations with the prominent gold deposits are still being
discussed and have been comprehensively reviewed, summarized and
expanded in Zhai et al. (2007) and recent papers (e.g., Dong et al.,
2013; Guo et al., 2013; Li and Santosh, 2014; Li et al., 2012, 2013,
2014; Tan et al., 2012; Windley et al., 2010). Here, the comparison of
Fig. 9. Schematic summary of the inferred setting of the Siberian Large Igneous Province in
relation to the West Siberian Basin and the Siberian Craton. For legend see Fig. 3B.
the associated Early Cretaceous magmatism with the large igneous
provinces of Eurasia is inspired by its designation as a ~130–120 Ma
Giant Igneous Event (Wu et al., 2005) along the eastern Asian continen-
tal margin. The complexes of this Giant Igneous Event are generally
thought to neither constitute a large igneous province nor directly relate
to amantle plume. Despite the distinct involvement ofmantle processes
with upwelling of the asthenosphere, the generating mantle environ-
ment is considered shallow rather than deep and to have produced a
scattered igneous province rather than a large igneous province
(Pirajno, 2013). Liu et al. (2008) concluded that the destruction of the
roots of theNorth China Cratonwas not a ‘local’ event but part of region-
al crustal detachment and lithosphere thinning in East Asia. The sugges-
tion by Wu et al. (2005) was taken up byWindley et al. (2010) in their
Fig. 1 in which the coastal belt between 50° and 25° N is indicated as a
delamination zone in the lithosphere. The concept of the destruction
or removal of part of the lithospheric root of the North China Craton is
solidly anchored in the study of xenoliths of Ordovician, Mesozoic and
Cenozoic kimberlite pipes, implying the removal of some 120 km in
the Mesozoic (e.g., Deng et al., 2004; Fan et al., 2000; Griffin et al.,
1998; Menzies et al., 1993, 2007;Windley et al., 2010). Although along-
side these discussions the association with the mineralization in the
region seems clear cut because of the temporal overlap of the processes,
the direct relations between the two are only beginning to emerge.

6.2. The setting of the North China Craton

The Craton is hemmed in by three subduction zones (Solonker,
Dabie and Pacific) and disturbed by the far-field effects of the Mon-
gol–Okhotsk suture and the Late Jurassic–Early Cretaceous collapse of
the Mongolian plateau with the formation of the Yanshan belt on the
northern margin of the North China Craton (Meng, 2003, challenged
by Windley et al., 2010). The lithosphere destruction remained limited
to the eastern part of the Craton. Cope and Graham (2007) noted that
the eastern and western parts of the North China Craton had a similar
history during most of the Paleozoic, including a regional Silurian–
Devonian disconformity suggesting that both parts were elevated and
stable till the Early Jurassic. Themargins of the eastern block are gener-
ally seen in the Solonker and Dabie Sutures in the north and south, re-
spectively, with the Tan–Lu Fault in the east and the so-called Gravity
Lineament (see Wang et al., 2006) to the west.

Prior to closure of the Paleotethys Ocean in the Solonker and Dabie
Sutures, subduction of the oceanic lithosphere and its inherent water
content had taken place since the Early Viséan (~340 Ma, Stampfli and
Borel, 2002). The subduction of the Pacific plate below Asia added
further water to the continental mantle, and may have affected a belt
of ~3000 km along the coast, eventually reaching ~1000 km inland.
Windley et al. (2010, and references therein), building on the ideas of
Maruyama et al. (2004) and Maruyama et al. (2009), documented a
role for hydro-weakening of the North China Craton root by the
introduction of water-bearing complexes during subduction of the
Paleotethys plate along the above sutures and thewestward subducting
Pacific plate. Although they draw the extent of the delamination to the
north and to the south, they do not offer an explanation beyond the
North China Craton.

6.3. Timing and setting of the gold mineralization

Li et al. (2006) showed that the gold mineralization in the eastern
part of the Jiaodong district coincided with the emplacement of wide-
spread mafic to intermediate dykes and was younger than the granites.
In the Pengjiakuang gold deposit they dated (40Ar/39Ar) sericite from
auriferous alteration at 120.9 ± −0.4 to 119.1 ± 0.2 Ma, and biotite
from the adjacent Queshan granite at 120.9 ± −0.4 to 119.1 ±
0.2Ma. At Rushan they estimatedmineralization-associated sericite be-
tween 109.3± 0.3 and 107.7±0.5Mawhereas biotite from the hosting
monzogranite formed between 129.0 ± 0.6 and 126.9 +/− 0.6 Ma. In
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Fig. 10. Schematic distribution of Late Jurassic and Early Cretaceous Giant Igneous Event.
Modified from Windley et al. (2010).
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parallel, Mao et al. (2008b) emphasized that the gold deposits of west-
ern Jiaodong were coeval with 121–114 Ma lamprophyre and dolerite
dykes. Retrograde alteration fluids in lamprophyres and dolerites were
found to be the same, as part of a potassium- and carbon dioxide-rich
system, and younger than the granitic complexes. An extensively docu-
mented study by Tan et al. (2012) of the Guocheng deposit, Jiaodong,
found three geodynamic events from lead isotope systematics. Starting
with the findofmantle complexes thatweremetasomatized by subduc-
tion in the Paleoproterozoic, they specified the following elements:

“(1) repeated injection of basic magma from metasomatized SCLM
into a crustal reservoir of felsic composition along with sulfide melt
exsolution, possibly enriching the hybrid magma in sulfur and ore
metals,
(2) late stage aqueous fluid exsolution destabilized magmatic
sulfides and thus incorporated their metal and sulfur endowment,
(3) buoyant rise of magmatic-hydrothermal fluids into zones of
structural weakness, where focused ore precipitation occurred, and
(4) ongoing extension facilitated prolific mafic and felsic
magmatism.”

This proposal compares closely with the suggestions by Li et al.
(2006) and Mao et al. (2008b): gold, dolerite, lamprophyres are coeval
and younger than the granitoids. In more absolute terms, there is a
range of some ten milion years. This window broadens again with the
estimates by Li et al. (2012) of 155–119 Ma for the gold deposits in
theXiaoqinlingdistrict in the southernNorth China Craton. In a compre-
hensive study of the geodynamic setting of the goldmineralization, Guo
et al. (2013) provided an overview of eleven earlier models. They
expanded suggestions by Yang et al. (2012) and involved thinned sub-
continental and metasomatized mantle, underplated mafic magmas
and upwelling asthenosphere from the stagnant Pacific plate in the
transition zone below the Tan–Lu Fault Zone as a major corridor for
magmatism andmetallogeny. The Pacific slab has been foundby seismic
tomography along the mantle transition zone below eastern Asia
(Huang and Zhao, 2006; Zhao et al., 2010; Zhu et al., 2011) but the exis-
tence of a corresponding orogen in the coastal belt of Eastern China has,
apart from the Sulu segment, not been documented in published verti-
cal sections. The suggestions by Zhu et al. (2011) (their Fig. 4; see also Li
et al., 2012) concerning the destabilizing interaction of the relatively
steep, westward subduction of the Pacific lithosphere and mantle con-
vection extend the proposals by Guo et al. (2013) with the stagnant or
stalled segment in the mantle transition zone and its implications in
terms of dehydration and degassing (Huang and Zhao, 2006; Ivanov,
2007; Ohtani and Zhao, 2009; Pirajno, 2013). Oxidizing conditions at
depth, related to partial melting in the stalled slab (Sillitoe, 1997, with
reference toMcInnes and Cameron, 1994) liberating gold from sulfides,
would have augmented the mineralizing potential. The recently
proposed model by Goldfarb and Santosh (2014) builds on earlier pro-
posals by Goldfarb et al. (2007) but is not consistentwith the seismic to-
mography results (e.g., Huang and Zhao, 2006; Zhao, 2004, 2009; Zhao
et al., 2010). There is no indication that steepening of the crust (litho-
sphere) ever occurred just above the Tan–Lu Fault whereas according
to the tomography the steepening of the oceanic crust occurs currently
at the trench east of Japan.

6.4. Giant Igneous Event

Wu et al. (2005) studied the widespread Mesozoic igneous rocks
(Fig. 10) of eastern China, initially with zircon U–Pb SHRIMP, LA-ICP-
MS and TIMS dating of dolerite, diorite and granite from the Liaodong
Peninsula. Comparisonwith published data from other regions, (includ-
ing the Xing'an–Mongolian (Xingmeng) Orogenic Belt in NE China, the
Yanliao region, the Jiaodong Peninsula, the Dabieshan, and the eastern
Yangtze Craton) led them to define a Giant Igneous Event between
~132 and ~120 Ma. In the Great Xing'an Mongolian ranges the ages
spread between 137 and 105 Ma. They attributed the magmatism to a
combination of continental breakup, rapid plate motion, including sub-
duction of the Pacific plate, lithospheric delamination, asthenospheric
upwelling and crustal melting in an extensional setting. Wu et al.
(2005) defined an overall extensional setting on the basis of coeval A-
type granites, dyke swarms and metamorphic core complexes with
large-scale gold mineralization, magmatic underplating, lower crustal
granulite metamorphism and extensional to strike-slip deformation.
Fan et al. (2003) found the late Mesozoic volcanic rocks of the northern
Da Hinggan Mountains (Xing'An Ranges) enriched in LIL elements
and depleted in HFS elements and inferred their derivation from a
metasomatized lithospheric mantle. They concluded that these com-
plexes formed independent of subduction of the Pacific plate and
could not be related to a mantle plume. Mesozoic mafic volcanism
occurred largely along the northern and southern margins of the
North China Craton and intrusive ultramafic–mafic complexes were
mainly formed in the center of the craton (Zhang, 2007; Fan et al.,
2007; Huang et al. (2007) reported on the geochemistry of mantle-
derived rocks. They concluded that depletion of HFS elements and en-
richment in LIL elements cannot be attributed to enrichment by ancient
fluid or melt and they preferred interaction between lower continental
crust and lithospheric mantle or upwelling asthenosphere. Garnetifer-
ous assemblages resulting from metamorphic reactions in the Craton's
root may have acted as sinkers leading to delamination.

In the absence of precise geochronological constraints for the volca-
nism in the Great Xing'an of northeastern China, Wang et al. (2006)
conducted a 40Ar/39Ar study of mainly basalts and basaltic andesites
(see Fig. 10 for the distribution of Late Jurassic–Early Cretaceous
volcanics, after Windley et al., 2010). On the basis of their compilation
with published data from surrounding regions, including the study by
Wu et al. (2005), Wang et al. (2006) concluded that magmatism took
place from ~160Ma till ~113 Ma in four distinct pulses whichmigrated
fromwest to east and which they related to the closure of the Mongol–
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Okhotsk Ocean and eastward delamination of the lithosphere from the
western edge of the China–Mongolia Block. In view of the distribution
of the Late Jurassic–Early Cretaceous volcanics and their ages, they pre-
ferred a relation with the Pacific lithosphere. However, the overlap in
time with Mongol–Okhotsk-related processes hampers a definitive so-
lution. Moreover, it is unclear to what extent the zonation observed by
Wang et al. (2006) affected the North China Craton south of latitude
40° N. The Cenozoic lavas, Early Tertiary tholeiites, Late Tertiary and
Quaternary alkaline to peralkaline basalts are thought to stem from
upwelling asthenosphere in the wake of craton destruction (Windley
et al., 2010).

6.5. Triggers

In view of the constraints in time of the plate tectonic processes,
destabilizing dynamic control of igneous and mineralizing processes is
to be expected. The triggers of the various processes have been sought
in relatively abrupt events like the collision of continental blocks as
there are the Yangtze and North China Cratons and/or the North China
and Siberian Cratons (e.g., Wang et al., 2006), the reversal of movement
along the Tan–Lu Fault Zone (e.g., X. Wang et al., 2011), the change in
the orientation of Pacific plate movement from orthogonal to parallel
to the continental Asian margin (Goldfarb et al., 2007), changes in the
stress field along the Tan–Lu Fault (Goldfarb and Santosh, 2014; Yang
and Santosh, 2014), the rise of the Ontong Java Plume (Ernst and
Jowitt, 2013; Goldfarb et al., 2007 and references therein) and the
Kerguelen Plume (Li and Santosh, 2014 and references therein).
Windley et al. (2010) suggested post-collisional thrusting on the
Solonker and Dabie Sutures, largely in the Jurassic, led to extension
and thinning in the Cretaceous with major extension on the hydro-
weakened crustal root of the eastern part of the Craton.

6.6. Open questions and one certainty

Uncertainties surrounding the post-Triassic evolution of the North
China Craton follow directly from a history of events for the eastern
North China Craton by Windley et al. (2010, their Fig. 3). It spans
some 130 my in time between about 220 and 90 Ma. They include pro-
cesses between the Siberian and Yangtze Cratons on the one hand and
between the Pacific and the Ordos Basin in the west on the other. The
overall mechanical and chemical interaction of the principal continental
blocks with the intervening subducted oceanic lithosphere across
eastern Asia, and the subduction of the Pacific plate affecting the entire
theater, appears unavoidable. The concentration in time of extension,
root loss, peak magmatism and mineralization within the same twenty
million years is bound to hamper unscrambling the essentials. More-
over, the differences in timing of gold mineralization in the northeast
(e.g., Li et al., 2006; Mao et al., 2008b) and the southwest (e.g., Li et al.,
2012) of theNorthChinaCraton raise several options: diachronousmin-
eralization processes or mineralization in two different systems, North
China Craton destruction or Dabie–Sulu–Qinlin aftermath? Is the gold
mineralization along the northern margin of the North China Craton
indeed a matter of North China Craton destruction or did it follow
from the orogenic processes in the Permo-Triassic, or from the major
strike-slip dissection along the Solonker and Dabie Sutures? Should a
Late Jurassic–Early Cretaceous orogen still be consistently delineated
in eastern continental Asia, the question arises: ‘Howand towhat extent
do orogenic gold deposits depend on the nature of an orogen?’ Also,
three belts of metamorphic core complexes in different parts of eastern
Asia with different setting, together have their peak development be-
tween 140 and 110 Ma, yet owe their existence to different causes in
different parts of eastern Asia (Windley et al., 2010). Thesewere formed
during root loss of the eastern North China Craton, gold mineralization,
and deep strike-slip deformation along the coastal belt. Of fundamental
significance is the nature of the interaction between Pacific lithosphere
and the cratons, especially since these have generally not yet been ex-
plicitly identified in the interpretations of the seismic tomography.

The tomographic imagery of the eastern and northeastern Pacific
seaboard shows the systemic leveling of the Pacific oceanic lithosphere
in theMantle Transition Zone (Zhao et al., 2010) but the cratonic blocks
can only vaguely be made out and detached roots remain a matter of
speculation. Yet, with the delamination belt suggested along the Pacific
coast (Windley et al., 2010;Wu et al., 2005) and the goldmineralization
extending northward to the eastern Stanovoy block (Goldfarb et al.,
2007), lithosphere destruction would have affected not only the North
China Craton but also the intervening complexes, as for instance in the
Great Hinggan of northeastern China with its prolific Early Cretaceous
volcanics and its different types of ore deposits (Zhang et al., 2008;
Zhang et al., 2010; Zhou et al., 2012).

For thedestruction of the root of the eastern block of theNorth China
two different mechanisms have been recognized (e.g., Windley et al.,
2010): mechanical removal (delamination) and chemical replacement
(thinning). The lack of expression in the seismic tomographic sections
of remnants of the root at deeper levels might suggest that some form
of ‘digestion’ took place by replacement at scales smaller than the reso-
lution of the seismic tomography, especially along the boundaries of the
micro-blocks in the Craton (Li and Santosh, 2014). After some 35 my of
quiescence, the earlier calc-alkaline volcanism in the Greaty Xing'an,
north of the Craton, was succeeded from about 65 Ma by Cenozoic
tholeiites and alkaline basalts in such quantities that they qualify as
flood basalts. The meaning of the gap in time is intriguing but remains
unclear as long as the causes of the Giant Igneous Event on and off the
Craton (Wang et al., 2006; Wu et al., 2005) have not been balanced.
The first flood basalts extruded some fifty million years after the appar-
ent 120–110 Ma peak in gold production in the northeast of the North
China Craton.

The only certainty about the appearance of the goldmineralization is
that it occurred late in the history of the loss of the cratonic root during
interaction with magmas from a hydrous and probably oxidizing
domain in the asthenosphere.

6.7. Comparison of the Giant Igneous Event with the LIPs

Perhaps the most notable difference between the Early Cretaceous
Giant Igneous Event on the North China Craton and the recognized
Permian Tarim, Emeishan and Early Triassic Siberian Large Igneous
Provinces is the absence of extensive flood basalts. However, in this
respect it compares to the Permian Central European Province. Only in
the Cenozoic, flood basalts formed in variable volumes across the
North China Craton and surrounding regions. Yet, there are also sub-
stantial regions covered by Early Cretaceous basalt, rhyolite, andesite
and dacite, that make up some 100,000 km2 which, in turn, resemble
the ignimbrite, rhyolite, andesite and basalt complexes of Central
Europe where underplating (ultra)mafic magmas are thought to have
provided the heat to melt segments of the crust. In the absence of
further estimates of volumes and extent, and of the duration of extru-
sion between ca. 160 and 110 Ma, the East Asian Province probably
fails the formal criteria of the large igneous provinces (Ernst and
Buchan, 2002). Characteristic Ni–Cu–PGE ores have not been reported
and the Early Cretaceous metallogeny on the North China Craton was
dominated by mesozonal gold deposits. Moreover, there is consensus
concerning the absence of an active mantle plume (see Pirajno, 2013;
Windley et al., 2010). Recognizing these differences, a comparison
with the Eurasian Late Paleozoic and Early Mesozoic LIPs and their
explanations shows that the above failures of the North China Craton–
Great Igneous Event duo tend to clarify some aspects of the established
LIPs.

The Central European Large Igneous Province of Dobretsov et al.
(2010) was also known as a scattered igneous province (Doblas et al.,
1998; Perini et al., 2004), as is the Great Igneous Event in eastern Asia
(Pirajno, 2013). In Europe, however, there was no craton involved.



Fig. 11. The eastern block of the North China Craton with its gold deposits (Jiaodong
district), the trans-lithospheric strike-slip deformation (Tan–Lu Fault Zone) and the stalled
subducted Pacific lithosphere with its oxidizing potential on partial melting, within the
Mantle Transition Zone.
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Translithospheric strike-slip deformation dissected the Variscan orogen
and collapsemay have been involved in its demise prior to the emplace-
ment of the LIP complexes. The felsic and (ultra)mafic complexes show
indications of metasomatism of the lithoshericmantle related to earlier,
probably Devonian to Early Carboniferous subduction processes. The
Early Permian volcanism of ignimbrite, rhyolite, dacite, andesite and
minor tholeiitic basalt is not unlike the Late Jurassic–Early Cretaceous
volcanism in eastern Asia. As in the Jiaodong region, an association of
lamprophyre and hornblende gabbro intrusionswith diverse ore depos-
it types may relate to melting of mantle complexes that were enriched
by metasomatism during earlier subduction.

The Tarim igneous complex is mainly built by tholeiitic basalts. Its
estimated volumes and extent tend to qualify as a large igneous province
although large parts are covered by kilometers of post-Permian sedi-
ments. Indications of metasomatism of the source rocks have been no-
ticed along the northern margin of the Tarim Basin and within the Tuha
Basin to the north. In the gabbro–norite plutons in the eastern Tianshan,
water-rich magmas may have been involved. Extensions of the main
complexes in the Tarim Basin to the west and to the east have been
emplaced along the easterly-striking, translithospheric strike-slip zones
which dissect the Southern Tianshan (e.g., Konopelko et al., 2007, 2009;
Seltmann et al., 2011). The eccentric position of the bulk of the volcanic
complexes away from the Southern Tianshan on the Precambrian Tarim
Block resembles the position of the Emeishan LIP on the Yangtze Craton
and of the bulk of the Siberian LIP on the Siberian Craton. The sources of
the magmas are generally agreed to stem from the (heterogeneous)
asthenosphere and have long been attributed to an active mantle
plume. With the recently considered equivalence of ‘asthenosphere’ and
‘mantle plume’ as a source of heat by Arndt (2013), the predominance
of the plume mechanism was reduced. At the same time, Zhang and
Zou (2013b) invoked the mechanism proposed by Xu (2001) for the de-
struction of the North China Craton by thermo-mechanical and chemical
erosion, to explain the Tarim LIP with the (partial) destruction of the root
of the Tarim Craton. The implication is that, again, a long inferred active
mantle plume model is no longer required for the production of a prom-
inent large igneous province.

The Siberian LIP is renowned as one of the largest continental
igneous provinces and is generally explained as the result of an active
mantle plume. Lithosphere delamination has been suggested as an
alternative (e.g., Arndt and Christensen, 1992; Begg et al., 2010;
Elkins-Tanton, 2005; White and McKenzie, 1995) were it not for the
presumably too small lava volumes produced that way. Whereas
volumes and extent are exemplary, the mechanism of delamination
was cited by Saunders et al. (2007) to explain the very volumes of the
Siberian complexes. Following Bercovici and Karato (2003), water
from themantle transition zone introduced by subduction, has been in-
voked by Ivanov (2007), Ivanov and Balyshev (2005) and Ivanov et al.
(2008) as a factor to lower the melting temperature of the source com-
plexes of the Siberian LIP.We see the same process proposed in the case
of the partial foundering of the North China Craton root (Pirajno, 2013;
Windley et al., 2010), inclusive of a process of consequent eclogitization
and the production of a sinker of the failing lithosphere as suggested by
Elkins-Tanton (2005). In the case of the Siberian LIP, translithospheric,
transcurrent shear (e.g., Czamanske et al., 1998) togetherwith peripher-
al rifting of Pangea (Gutiérrez-Alonso et al., 2008)may have played a role
in the production of the exceptionally large lava volumes (De Boorder,
2014).

The Emeishan LIP in southwestern China has been extensively docu-
mented. Generally the LIP has also been attributed to an active mantle
plume (Shellnutt et al., 2010). However, in a comprehensive petrologi-
cal and geochemical study, Kamenetsky et al. (2012) concluded from Sr
and Nd isotopic compositions that the sources of the complex resided
rather in the sub-continental lithosphere than in the asthenosphere.
Jian et al. (2009a,b) deduced a direct relation with the Paleotethys
Orogen, with lithosphere-scale pull-apart deformation in the wake of
orogeny.
The North China Craton and the gold deposits of Jiaodong and else-
where in the eastern block of the Craton demonstrate the significance
of the destruction of a segment of the continental lithosphere followed
by upwelling of the asthenosphere. Early to Middle Paleozoic subduc-
tion of the (Paleotethys) oceanic lithosphere was probably responsible
for the long-term introduction of water into the subcontinental mantle
and the consequent changes of its composition and rheology. In Eastern
Asia, the subducted slab of the Pacific oceanic lithosphere stalled in the
hydrous Mantle Transition Zone and may have released gold and other
metals in an oxidizing and particularly hydrous environment (Fig. 11).
Inferred subduction-related metasomatism of the sources of the
Permo-Triassic LIP and SIP complexes suggests that similar processes
played a role in the Paleozoic of Eurasia, albeit in relation to orogens
that lost their root by gravitational and/or far-field forces. The results
are comparable but unique in each case. Yet, Jiaodong and the North
China Craton have their very own place and setting within the scala of
wrecked lithosphere segments.

7. Conlusions

1 Orogenic gold districts can form independently of orogenesis.

2 The stalled Pacific lithosphere slab in the mantle transition zone
below eastern Asia may have released gold and other metals because
of its oxidation within a notably hydrous environment, especially
below the North China Craton.

3 A scattered igneous province need not be distinguishable from a large
igneous province.

4 Scattered igneous provinces and large igneous provinces can form
independent of active mantle plumes.

5 Each continental large or scattered igneous province has its multi-
scale characteristics, dependent on its setting; yet, in the Late Paleozo-
ic and Mesozoic of Eurasia there was always a variable interaction
involved between the asthenosphere and the continental lithosphere
plates upon destruction of a principal segment of the continental
lithosphere. It was at this stage that unpredictably prolific and diverse
ore deposits tended to be formed. These include the ore types known
as orogenic, late- and post-orogenic, post-tectonic, anorogenic and
post-peak metamorphic deposits of meso- and epizonal gold,
arsenic–tungsten–gold, mercury–antimony–gold, mercury and
nickel–cobalt–arsenic which, together with the LIP-associated
nickel–copper–PGE, have also been asserted to have been associated
with the Eurasian Permo-Triassic and mantle plumes.

image of Fig.�11
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6 Prolonged subduction of oceanic lithosphere can be an important
factor inmantle processes affecting the rheology and the solidus tem-
perature of mantle complexes by introduction of water leading to
hydro-weakening, metasomatism and melting of mantle complexes.
Active plumes from the core–mantle boundary are not a prerequisite
for the voluminous melting of mantle complexes.

7 The formation of mesozonal gold districts involved emplacement of
the asthenosphere at higher levels; translithospheric strike-slip
deformation is probably the most effective mechanism to provide
the necessary permeability.

8 The flood basalts of eastern Asia, theoretical sources of Ni–Cu–PGE
deposits, only emerged after 35 million years of magmatic quies-
cence. The meaning of this gap is not clear.
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