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Abstract 

We present an integrated petrological, geochemical, and geophysical model that offers an 
explanation for the present-day anomalously high non-volcanic deep (mantle derived) CO2 
emission in the Tyrrhenian region. We investigate how decarbonation or melting of carbonate-rich 
lithologies from a subducted lithosphere may affect the efficiency of carbon release in the 
lithosphere-asthenosphere system. We propose that melting of sediments and/or continental crust 
of the subducted Adriatic-Ionian (African) lithosphere at pressure greater than 4 GPa (130 km) 
may represent an efficient mean for carbon cycling into the upper mantle and into the exosphere in 
the Western Mediterranean area. Melting of carbonated lithologies, induced by the progressive rise 
of mantle temperatures behind the eastward retreating Adriatic-Ionian subducting plate, generates 
low fractions of carbonate-rich (hydrous-silicate) melts. Due to their low density and viscosity, 
such  melts can migrate upward through the mantle, forming a carbonated partially molten CO2-
rich mantle recorded by tomographic images in the depth range from 130 to 60 km. Upwelling in 
the mantle of carbonate-rich melts to depths less than 60 - 70 km, induces massive outgassing of 
CO2. Buoyancy forces, probably favored by fluid overpressures, are able to allow migration of 
CO2 from the mantle to the surface, through deep lithospheric faults, and its accumulation beneath 
the Moho and within the lower crust. The present model may also explain CO2 enrichment of the 
Etna active volcano. Deep CO2 cycling is tentatively quantified in terms of conservative carbon 
mantle flux in the investigated area. 
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1. Introduction 
 

The role of Earth degassing in present-day global carbon budget and consequent climate effects 
has been focused chiefly on volcanic emissions (e.g. Gerlach, 1991a; Varekamp and Thomas, 
1998, Kerrick, 2001). The non-volcanic1 escape of CO2 from the upper mantle, from crustal 
carbonate rocks, from hydrocarbon accumulations, and from geothermal fields is not considered in 
the budgets of natural release processes (cf. IPCC reports).  However, the impact of these 
processes on atmospheric CO2 budget is relevant if considered at the regional scale.  

Italy constitutes an extraordinary example of massive CO2 subaerial fluxes in the Western 
Mediterranean region (e.g. Chiodini et al., 1999, 2004; Rogie et al., 2000; Chiodini and Frondini 
2001; Minissale, 2004). In Italy, CO2 emissions occur both in those areas of young or active 
volcanism (e.g. the Tyrrhenian border of Central Italy; Fig. 1), and at zones in which there is no 
evidence of magmatic activity, such as Central and Southern Apennines (Fig. 1). 

Interactions between magmas and carbonate rocks at walls of magma chambers locally 
contribute CO2 in some recent and active volcanic zones (e.g., Alban Hills, Mt. Ernici, Vesuvius; 
Federico and Peccerillo, 2002; Frezzotti et al., 2007; Iacono Marziano et al., 2007a, b). However, 
the bulk of present-day soil degassing in Italy is a regional feature affecting both volcanic areas 
and zones where volcanism is unknown (e.g. Apennines). This suggests that the non-volcanic 
“cold” CO2 degassing in Italy has a deep origin (i.e., upper mantle), mainly based on isotope data 
(e.g. 12C/13C and 3He/4He; Minissale, 2004; Chiodini et al., 1999; 2004; Italiano et al., 2001, 2007).  

In this paper, we integrate the VS tomography of the lithosphere-asthenosphere system 
along some key sections in the Western Mediterranean region, the geodynamic evolution of the 
study area, the properties of mantle rocks, and the timing and the nature of the magmatism to 
discuss a model of mantle metasomatism, which can account for deep carbon cycling and CO2 

degassing to the exosphere. 
 

2. Nature of geologic CO2 emission in Italy 
 

A summary of recent CO2 emission measurements in Italy is reported in Fig. 1 and Table 1, based 
on literature data. Active volcanoes represent a prominent natural source of CO2 to the pre-
industrial atmosphere in Italy, possibly since they started to build up (> 0.1 Ma). At Etna (Fig. 1), 
CO2 fluxes ranging from 13 to 43.8 Mt/year (average 25 Mt/year) were measured from 1976 to 
1984 (Gerlach, 1991; Allard et al., 1991). Lower values, between 4 and 13 Mt/year, were obtained 
from 1993 to 1997, due to a decrease of the CO2 emission rate after the 1991-1993 eruption 
(Allard et al., 1997). At Etna, further CO2 degassing occurs from the summit area and the lower S-
SW and E flanks (1-5 Mt/year), and from ground waters (0.4 Mt/year). On average, Etna emits 
more CO2 than many other volcanoes worldwide (e.g. 3.1 Mt CO2/year from Kilauea; Gerlach et 
al., 2002; Table 1) and contributes about 5-10 % of the total estimated global CO2 emissions by 
subaerial volcanism (cf. Mörner and Etiope, 2002). Other active volcanoes (e.g., Vesuvius, 
Phlegrean Fields, Stromboli, Vulcano) contribute substantially to the overall atmospheric CO2 

                                                            
1 CO2 that is not released from the craters and flanks of volcanoes. Although non-volcanic degassing can be 
associated with recent volcanism, CO2 does not originate in magma chambers, and it is not discharged 
through the volcanic systems  (Kerrick, 2001). 
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budget in the Western Mediterranean region, which is conservatively (lower bound) estimated at 
about 30 Mt CO2/year  (see references in Table 1).   

Degassing of “cold” CO2 in areas where volcanism is not active anymore or is absent 
occurs via diffuse soil emission, dry gas vents, and from thermal and cold springs associated with 
fault and fractures often of deep origin (e.g., Chiodini et al., 1998; 1999; 2000; 2004; Etiope, 1999; 
Italiano et al., 2000; Rogie et al., 2000; Mörner and Etiope, 2002; Minissale, 2004; Gambardella et 
al., 2004) (see also Fig. 1). Regional CO2 flux mapping for Central Italy indicates emissions of 
about 9.7 - 17 Mt CO2/year in an area of 45.000 km2 (Tuscany, Northern Latium geothermal fields, 
and Central Apennine chain; Gambardella et al., 2004, Table 1). The total budget of ground CO2 
degassing is comparable with the volcanic output (from > 4 to 30 Mt/year; cf. Mörner and Etiope, 
2002).  

A close association between CO2 escape and the main geological structures is evident: a 
CO2 flux  of 4-13 Mt /year has been estimated  in the axial zones of the Apennines chain (Chiodini 
et al., 2004 and references therein; see also Table 1). Some 0.1  to 0.3 Mt CO2/year are emitted 
from gas vents at the Mefite  of the Ansanto valley (Irpinia), located in the external parts of the 
Apennines, right over the hypocenter of the 1980 earthquake along the deep so called 41° N 
parallel line (Fig. 1; Italiano et al., 2000; Rogie et al., 2000). Focused high CO2 fluxes are also 
measured in the Siena-Radicofani Graben (Tuscany), and in Sicily from mofetes distributed along 
two directions, corresponding to major fault systems that cut Eastern Sicily (De Gregorio et al., 
2002). In Sardinia, CO2 fluid degassing occurs, in the northern part of the Campidano Graben, 
from faults in the Logudoro basin (Minissale et al., 1999). 

Carbon and helium isotope compositions have been used to constrain the origin of CO2 in 
non-volcanic soil emissions. 3He/4He ratios from gases, summarized in Fig. 2 (R/Ra up to 4.48; 
Minissale, 2004), indicate an important mantle component, and are similar to R/Ra measured in 
lavas of Plio-Quaternary volcanoes. Chiodini et al. (2000) report that about 40 % of the inorganic 
carbon in non-volcanic CO2 derive from a source characterized by a δ13C of -3 ‰, compatible with 
a mantle metasomatized by crustal fluids, and/or with mixed crust + mantle.  

Isotope data have led most authors (e.g., Chiodini et al., 2004; Minissale, 2004, and 
references therein) to propose that mantle CO2 contributes significantly to present-day degassing 
processes in Central-Southern Italy. CO2 rising from the mantle would accumulate at the Moho or 
within the lower crust. Namely, direct degassing of CO2 at the surface in the zones of thinned 
continental crust would occur through extensional fault systems, typical of such a context. 
Conversely, in those areas (like some sectors of the Apennines) characterized by a thickened 
continental crust and little extension, mantle-derived CO2 would remain confined in structural 
traps. Crustal CO2 confinement might result in over-pressurized reservoirs, which would facilitate 
seismogenesis, like the Colfiorito 1997 earthquake (Chimera et al., 2003; Miller et al., 2004). 

 
3. Overview of the geodynamic evolution 

  
The Oligocene to present evolution of the Western-Central Mediterranean region has been 
characterized by the separation of the Corsica-Sardinia block from the southern European margin, 
the opening of the Ligurian-Provençal, Algerian, and Valencia basins, and by the opening of the 
Tyrrhenian Sea and counter-clockwise rotation of the Italian peninsula (e.g., Doglioni et al. 1997, 
1999; Carminati et al. 1998; Faccenna et al., 2001; Peresan et al., 2007). There is a general 
consensus that these structural modifications are related to Oligocene to present west-dipping 
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subduction of the African plate beneath the southern European margin, which migrated from west 
to east, up to its present position in the southern Tyrrhenian Sea. The Balearic-Provençal Sea 
opened as a back arc basin between approximately 32 to 15 Ma ago, contemporaneously with 
orogenic (mainly calcalkaline) magmatism, which migrated eastward with time from Provence and 
Balearic Sea to Sardinia (see Lustrino et al. 2004, 2007a, b for a review). The Tyrrhenian Sea 
opened behind the west-dipping Adriatic-Ionian sectors of the African plate between about 15 Ma 
and the present, and was accompanied by the eastward migration of the orogenic magmatic 
activity (Savelli and Gasparotto, 1994). The average lithospheric models proposed for the two 
basins by Panza and Calcagnile (1979) agree with these age estimates. Parallel zones of 
compression (at the front) and extension (in the back arc basins) migrated towards the east, in the 
same direction of the magmatism (Pauselli et al., 2006).  

 The opening of the Tyrrhenian Sea and the counterclockwise rotation of the Italian 
peninsula resulted in the longitudinal stretching and fragmentation of the Apennine chain, with 
formation of several arc sectors separated by important transverse tectonic lines (e.g., the so-called 
41° N parallel line, the Sangineto fault, the Tindari-Letojanni fault; Locardi, 1988; Turco and 
Zuppetta 1998; Rosenbaum et al., 2008). These structures separate crustal blocks characterized by 
different drifting velocity, structure of the lithosphere, and degrees of block rotation (Peresan et 
al., 2007), and by different compositions of the volcanism (Turco and Zuppetta 1998; Peccerillo, 
1999; Peccerillo and Panza, 1999).  Extensional tectonics affected the margin of the African 
foreland (Corti et al., 2006) where Oceanic Island Basalt (OIB)-type magmatism occurred, starting 
from the Miocene.  

 

4. Overview of the magmatism 
 

A wide variety of magma types occur in the Western Mediterranean (Fig. 3). These have been 
divided into two broad groups, showing distinct geological setting, incompatible element, and 
radiogenic isotope signatures (Peccerillo, 2005; Peccerillo and Lustrino, 2005; Lustrino and 
Wilson, 2007). The first group of magmas, generally referred to as “orogenic”, has been erupted in 
Provence, Balearic Sea, Sardinia, the Southern Tyrrhenian Sea and the Italian peninsula, i.e. in 
zones which were affected by the Oligocene to present subduction of the African plate beneath the 
southern European margin. The petrochemical affinity of these magmas is mainly calcalkaline 
with some arc tholeiites in Sardinia, Balearic Sea, and Provence (Lustrino et al., 2004), whereas it 
is calcalkaline to shoshonitic and ultrapotassic in the Aeolian arc and in Central Italy (e.g. 
Francalanci et al., 1993; Peccerillo, 2003; Fig. 1). Orogenic magmas show high LILE/HFSE ratios, 
with negative Nb, Ta and Ti anomalies, and positive spikes of Pb in their mantle-normalized 
patterns, features that are typical of volcanic rocks erupted at converging plate margins.  

Ages of orogenic magmas are variable. Oldest rocks occur in Provence, Balearic Sea and 
Sardinia (Oligo-Miocene; Fig. 3) and become younger in the Tyrrhenian Sea floor, in the Italian 
peninsula and the Aeolian arc (Miocene to present). The decrease in age from west to east would 
be related to the slab rollback and migration of the subduction zone in the same direction 
(Carminati et al., 1998; Doglioni et al., 1999 and references therein).  

Calcalkaline to ultrapotassic orogenic magmas along the Italian peninsula and in the 
Aeolian arc have variable degrees of evolution, from mafic to felsic. The most mafic rocks possess 
high Mg# (Mg/(Mg+Fe2+) atomic ratios >  70), Ni (> 100-200 ppm) and Cr (> 500 ppm), and low 
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δ18O (~ +5.5 to +6.0). These are typical of mantle-derived magmas, which have suffered little or 
no crustal contamination during emplacement. However, these rocks also have Sr-Nd-Pb-Hf 
isotope compositions that are intermediate between mantle and upper crust, with crustal-like 
isotopic signatures increasing northward, where some K-alkaline basalts have radiogenic isotope 
ratios closer to crustal than to mantle compositions. Helium isotope composition determined on 
fluid inclusions in olivine and clinopyroxene phenocrysts (Martelli et al., 2008) shows a general 
decrease in 3He/4He moving northward (Fig. 2), which correlates with the whole rock radiogenic 
isotopes increase in 87Sr/86Sr, and decrease in 143Nd/144Nd, 176Hf/177Hf, and 206Pb/204Pb (Peccerillo, 
2005; Martelli et al., 2008, and references therein). 

These data have led several authors (e.g., Peccerillo, 1985; Rogers et al., 1985; Conticelli 
et al., 2002; Peccerillo, 2005 and references therein) to conclude that mixing between upper crust 
and mantle components played a key role in the genesis of magmatism along the Italian peninsula 
and that such interaction occurred within the upper mantle. Melting of such a heterogeneously 
contaminated mantle generated various types of mafic melts exhibiting hybrid isotopic signatures 
between crust and mantle. Based on trace element and radiogenic isotope modeling, Peccerillo 
(1985) and Peccerillo et al. (1988) proposed that marly sediments were introduced by subduction 
processes into the upper mantle beneath Central-Southern Italy, generating a variably 
metasomatized source. The involvement of marly sediments in the mantle contamination during 
the latest stages of Adria plate subduction is able to account for several petrological, geochemical 
and isotopic characteristics of ultrapotassic magmas in Central Italy (Conticelli and Peccerillo, 
1992; Conticelli et al., 2002; Schmidt, 2007). 

A second group of magmas, generally referred to as “anorogenic”, has been erupted in 
back arc position and along the northern margin of the African foreland (Fig. 3). These have low 
LILE/HFSE ratios, generally with positive spikes of Ta and Nb, and no Pb anomalies. Sr-isotope 
signatures are poorly to moderately radiogenic, whereas Nd, and especially Pb isotopes are 
variable, and cover almost entirely the range of values shown by OIB-, and MORB-type magmas 
at global scale (see, Peccerillo, 2005; Stracke et al., 2005). Anorogenic magmas in the study area 
have been mainly erupted from 5 to 0.1 Ma ago in Sardinia, with incipient activity recently 
detected at about 12 Ma (Lustrino et al., 2007b), contemporaneously with the opening of the 
Tyrrhenian Sea (Lustrino et al., 2004), at several places in the Tyrrhenian basin (e.g., Ustica and 
several seamounts; Fig. 3), along the Sicily Channel (Miocene to present: Pantelleria, Linosa, and 
several seamounts; Calanchi et al., 1989; Rotolo et al., 2007; Di Bella et al., 2008), at Hyblei, and 
Etna (0.5 M.y. to present). Etna, overall showing OIB-type composition, also possesses some 
geochemical and isotopic signatures (e.g., relatively low Ti, high fluid-mobile element contents, 
relatively high δ11B ~ -3 to -5) that are close to arc magmas (see Schiano et al., 2001; Tonarini et 
al., 2001). The Tyrrhenian Sea anorogenic magmatism includes abundant MORB-type magmas 
forming new oceanic crust and some weakly Na-alkaline centers with an age ranging from 7 to 0.1 
Ma (Peccerillo, 2005, and references therein). 
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5. Mantle structure beneath the Western Mediterranean 

5.1 Present-day imaging: VS tomography 

Sample profiles of the three dimensional S-wave model obtained by the non-linear inversion of 
surface wave (Panza, 1981) tomography data in the Western Mediterranean and the Tyrrhenian 
Sea area are shown in Fig. 4. The complete description of the data coverage is given in Fig. 2 of 
Panza, et al. (2007b). The detailed discussion of the lateral resolution and of the uncertainty in the 
models is given by Panza, et al. (2007b) and Pontevivo and Panza (2006). The vertical resolution 
is controlled according to the results of Knopoff and Panza (1977) and Panza (1981). As a rule, the 
three dimensional variations evidenced satisfy the principle of maximum smoothness (Boyadzhiev 
et al., 2008) and are consistent with the resolving power of the used data. In Fig. 4, the central 
values of the Vs models are given for simplicity; details about uncertainties are given by Panza et 
al. (2007a, b). 

Section 1 (Fig. 3, and 4a) goes from Provence to Central Sardinia and to the Campanian 
area, running along the 41° parallel line in its Central and Eastern segment (Panza et al., 2007a). 
This section crosses the Balearic and the Tyrrhenian basins, the main extensional features in the 
Western Mediterranean area. Section 2 (Fig. 5b) runs from offshore southern Sardinia to the 
Aeolian arc and Calabria following an E-W and then NW-SE trend (Boyadzhiev et al., 2008; 
Peccerillo et al., 2008), along the direction of maximum extension of the Tyrrhenian basin during 
the last 5 M.a. (Sartori, 2003). Section 3 (Fig. 4b) is located in the Central-Northern Tyrrhenian 
Sea and goes through the Tuscany and Roman magmatic provinces (Panza et al., 2007b), where 
the abundant mantle-derived ultrapotassic magmatism with crustal-like radiogenic isotope 
signatures reveals extremely anomalous geochemical compositions for upper mantle sources.  

Section 1 (Fig. 4a) shows that the upper mantle beneath continental South-Eastern France 
exhibits rather homogeneous S-wave velocities (VS ~ 4.3-4.5 km/s) down to 250 km of depth. 
Starting from the coast of Provence, the upper mantle structure changes significantly. In spite of 
the non-uniqueness of the inverse problem of seismological data the occurrence of a low S-wave 
velocity layer (VS = 4-4.1 km/s) at a depth of about 60-130 km is a clear-cut feature. Such a layer 
is enclosed inside high-velocity material (VS ~ 4.3-4.55 km/s) and extends eastward to Sardinia 
and the Tyrrhenian Sea, with an almost constant thickness. The low-velocity layer raises to a 
shallower level beneath the Campania volcanoes of Ischia, Phlegrean Fields and Vesuvius, 
showing a decrease of VS to about 3.4-4.2 km/s. Note that the low-velocity layer is not limited to 
the underwater part of the section where young oceanic or thinned continental lithosphere is very 
likely present (Panza and Calcagnile, 1979), but it is also present beneath the Corsica-Sardinia 
block which is a fragment of the old European continental lithosphere, rotated to the East during 
opening of the Balearic Sea.  

Section 2 (Fig. 4b), that goes from Sardinia to the Aeolian Arc and Calabria, also exhibits 
a low-velocity layer but it is at a much shallower depth of 30 to 70 km and rises to 0-30 km 
beneath the active Aeolian volcanoes. An almost vertical seismically active body with high VS 
from 4.5 to 4.8 km/s likely representing the descending Ionian slab (Panza et al., 2003), cuts the 
low-velocity layer beneath Calabria. 

Finally, section 3 (Fig. 4b) crosses the Central Tyrrhenian Sea and the Tuscany and 
Roman magmatic province and the Apennines. In its Western segment, it is characterized by a 



7 

 

low-velocity layer with VS = 4.1-4.2 km/s at about 60-130 km of depth, that becomes shallower in 
the Roman Province (about 30-50 km). 

5.2 Geochemical features: xenoliths 

Spinel peridotites are present in the orogenic carbonatitic-melilitic pyroclastics of Vulture (0.2 
M.y.), in the orogenic lamproitic lavas of Torre Alfina (0.9 M.y.), and in the anorogenic Miocene - 
Quaternary volcanics of Mt. Hyblei (South-Eastern Sicily), and of Sardinia (Fig. 1; Conticelli and 
Peccerillo, 1990; Jones et al., 2000; Sapienza and Scribano, 2000 and references therein).   

At Vulture (Fig. 1), spinel peridotites consist of lherzolites and harzburgites, with 
subordinate dunites and wehrlites, which may contain phlogopite, amphibole, and carbonate.  
Downes et al. (2002) measured enriched LILE and LREE trace element patterns in clinopyroxene, 
associated with low HFSE contents, and proposed that metasomatic processes occurred by 
interaction of mantle rocks with silicate melts. Furthermore, peridotites show 87Sr/86Sr enrichment 
(0.7042–0.7058), higher than in most of the European continental lithosphere, and suggest that 
silicate-melts might have been subduction related. In these rocks, Rosatelli et al. (2007) described 
the existence of carbonate and silicate glasses, present as inclusions and microveins, formed by 
immiscibility processes from an original carbonate-rich silicate melt at pressures, P, of 1.8 - 2.2 
GPa (about 50-80 km of depth). The 87Sr/86Sr ratios in metasomatic calcite are equal to 0.705816 ± 
4·10-6, in the same range as rock 87Sr/86Sr data from Downes et al. (2002). 

Torre Alfina xenoliths (Tuscany; Fig. 1) consist of spinel lherzolites and harzburgites (up 
to 3-4 cm in diameter) that sometimes contain phlogopite. Rare phlogopite-rich xenoliths have 
been found and interpreted as remnants of metasomatic veins in the upper mantle. These have Sr-
Nd (87Sr/86Sr ~ 0.716 - 0.717; 143Nd/144Nd ~ 0.5121) isotopic signatures close to those of the host 
ultrapotassic rocks and have been suggested to represent the metasomatic veins whose melting 
gave ultrapotassic magmas (Conticelli, 1998). 

Protogranular spinel lherzolites and harzburgites from Hyblei (Fig. 1) show whole-rock 
selective LREE and incompatible elements enrichments (i.e., U, La, Sr, and P; Sapienza and 
Scribano, 2000). They contain extremely abundant CO2 inclusions, whose He isotope composition 
indicates mixing of two sources: a MORB-type mantle, and a radiogenic He enriched reservoir 
(Sapienza et al., 2005). He isotope data from Hyblei peridotites correlate with the He signature of 
Etna lavas (cf. Fig. 2).  

Taken collectively, mantle xenoliths geochemical and petrological features indicate 
pervasive metasomatic processes in the Western Mediterranean lithosphere. Carbonate-, and 
hydrous-silicate melts are recognized as possible metasomatic agents. Sr isotope data in mantle 
rocks from Vulture further suggest a subduction related origin of metasomatic melts, and the 
radiogenic isotopes in peridotites at Torre Alfina point to an upper crustal component in their 
source.  

 
6. Carbon-cycling through subduction, mantle anomalies, and CO2 degassing in the 

Western Mediterranean  
 

The data summarized in sections 4 and 5 highlight some remarkable relationships between the 
structure of the lithosphere-asthenosphere system, as indicated by VS structural models (Fig. 4), 
and the main geochemical features of magmas and of mantle peridotites. The occurrence of a 
continuous 60-130 km deep low-velocity layer, stretching from Southern Provence to the South-
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Eastern Tyrrhenian Sea area and running continuously beneath both oceanic-type (e.g., Central 
Tyrrhenian Sea) and continental-type lithosphere (e.g., Sardinia), coincides with the zone of 
Oligocene to present slab rollback, and it is associated with orogenic magmatism that migrates in 
the same direction (Panza et al., 2007a,b; Peccerillo et al., 2008). The low-velocity layer has been 
interpreted as a geochemically anomalous mantle, modified by the release of “material” (i.e. fluids 
and/or melts of variable composition) from the retreating lithosphere, leaving a wake of physical 
anomalies (Peccerillo et al., 2008).   

6.1 The low-velocity mantle layer: CO2-rich fluids/melts at depth  

The understanding of the nature of the low-velocity layer is crucial to have an insight into the 
lithosphere/asthenosphere evolution in the Western Mediterranean and to explain ongoing 
processes of mantle metasomatism and ultimately CO2 degassing.  Theoretically, a low-velocity 
layer might be induced by basaltic magmas,  generated by partial mantle melting processes at high 
temperatures (e.g., Goes and van der Lee, 2002; Cammarano et al., 2003). Alternatively, it might 
correspond to a level of “fluid” enrichment (i.e., free H2O-, CO2-rich fluids or melts, and/or H2O 
bound in mantle mineral’s lattice or at grain-boundaries) which may well induce composition and 
density variations in the mantle (Gaetani and Grove, 1998; Jung and Karato, 2001; Presnall and 
Gudfinnsson, 2005; Dasgupta and Hirschmann, 2006).  

It is unlikely that the low-velocity layer is related to the presence of a 70-km-thick front of 
basaltic magma. This would require a sustained supply of significant amounts of melt (more than 
1-4% in volume) through the whole mantle zone to allow migration (Hyndman and Shearer, 1989). 
Upward melt migration is, in fact, controlled by the supply rate from mantle melting at high 
temperature, and solidification of the partial melts is expected on cooling. Such a thick magma 
front is improbable, especially in some regions along Section 1 (Fig. 4a), such as the Provençal 
basin, where magmatism is not any more active at present. In addition, it would necessarily require 
considerably high temperatures in the mantle, which conflicts with the heat flux along the overall 
trajectory of Section 1 (Fig. 5).  

The considerable thickness of this shallow low-velocity layer may be better justified by 
the presence of low fractions of volatile-rich melts, or by fluids (free or mineral-bound). Its 
presence in zones affected by the Oligocene to present subduction strongly suggests that volatiles 
were likely released during the Eastward rollback of the West-directed Adriatic-Ionian plate. Slab 
dehydration, with consequent development of mantle wedge structures and volcanic fronts, has 
been modeled as a continuous process starting from low-grade conditions (10-20 km depth) to 
more than 200 km (e.g., Schmidt and Poli, 1998). However, if water-rich fluids or melts were the 
dominant mantle modifiers, there is no explanation for the confinement of the physical 
modifications at P > 2 GPa. Hydrous minerals (e.g., amphibole) are stable at P  ≤ 2 GPa in 
peridotites that have reacted with subduction released hydrous fluids, like in the Ulten Zone in the 
Eastern Alps (Scambelluri et al., 2006).  

In a carbonated mantle (i.e. presence of CO2 fluids, carbonate melts, and/or carbonates), 2 
GPa represents a well recognized threshold, which corresponds to the carbonated peridotite 
decrease of the solidus, experimentally determined at 2 - 2.5 GPa (Fig. 6a; Falloon and Green, 
1990). When P > 2 GPa, carbonates are stable phases and peridotite (± hydrous phases) solidus is 
considerably depressed: melting is supposed to commence with low fractions of carbonate-rich 
melts. When P < 2 GPa, both carbonate-rich melts and carbonates decompose releasing CO2 fluids 
(Canil, 1990; Frezzotti et al., 2002a, b). 
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These properties of CO2 at depth are able to account for the variations of the physical 
properties of the mantle beneath the Western Mediterranean region. Carbonate melts have the 
lowest viscosity of any other magma type, and very low interfacial energies with respect to mantle 
minerals. Dihedral angles (θ) are in the range of 25-30° and depend only weakly on temperature or 
pressure (Hunter and McKenzie, 1989; Watson and Brenan, 1987; Watson et al., 1990). These 
properties allow very low fractions of carbonate melts to rise through an interconnected network at 
very low porosities (0.1 %) and react with mantle minerals, which may well account for the low 
VS detected at P > 2 GPa (Dobson et al., 1996; Presnall and Gudfinnsson, 2005). Conversely, at  
P < 2 GPa, the dihedral angles (θ) between CO2 and matrix mantle minerals are greater than 60° 
and inhibit the formation of a porous fluid flow (Watson and Brenan, 1987): CO2 pooling should 
occur associated to decarbonation in the mantle above 2 GPa, with cessation of Vs attenuation 
(Canil, 1990; Frezzotti and Peccerillo, 2007). 

Therefore, we propose that the low-velocity layer between 60 and 130 km of depth 
beneath the Western Mediterranean represents a low viscosity wedge induced by the presence of 
carbonate-rich melts. Starting from below, the onset of the Vs attenuation at 130 km indicates the 
onset of mantle melting, while the level at about 60 km is the upward limit for the carbonate melt 
ascent. Such an interpretation does not signify that (hydrous) silicate melts are absent during 
mantle modifications at the considered pressures, but only that mantle processes are CO2 mediated.   

6.2 Carbonate-rich melts in the upper mantle beneath the Western Mediterranean  

The generation of carbonate-rich melts or fluids via subduction is a two-step process. The first step 
consists in “removing” carbonates (e.g., by devolatilization or melting) from the subducting 
lithosphere, and introducing them into the overlying upper mantle. Once carbonates are expelled 
from the slab and fluxed into the overlying mantle, they might freeze in mantle rocks giving rise to 
carbonated peridotites. However, if temperatures are sufficiently high, they might be preserved at 
the liquid state and migrate through porous or reactive flow (Presnall and Gudfinnsson, 2005).  

The addition of a carbonate component into the Western Mediterranean mantle may have 
been induced by two alternative processes: either decarbonation, or melting of sediment-bearing 
old oceanic and/or continental Adriatic-Ionian lithosphere. Carbonates, however, are stable to very 
high pressures and temperatures, and remain as refractory phases as lithosphere dehydrates. At 
depths between 90 and 150 km, marls do not undergo any devolatilization along subduction low-
temperature geotherms (400 - 600°C), and decarbonation commences only if temperatures exceed 
700 - 950°C (hot subduction; Kerrick and Connolly, 2001; Connolly, 2005). Further, 
decarbonation at high pressures requires fluxes of H2O from the marl sediments and/or the 
underlying lithosphere (Kerrick and Connolly, 2001).  

 In order to free substantial amounts of CO2, melting of carbonated crustal lithologies is 
necessary, which requires even higher temperatures (above 1000 - 1100 °C at 4 GPa; Dasgupta et 
al., 2004; Thomsen and Schmidt, 2008; Fig. 6a). At P > 3.7 GPa, melting of the assemblage 
phengite + quartz/coesite + clinopyroxene + kyanite  + garnet + calcite (9–10 wt.%)  generates 
immiscible silicate and carbonate liquids at 1100°C, and, at higher temperatures, a homogeneous 
carbonate-rich hydrous-silicate melt (Thomsen and Schmidt, 2008). At these (P, T) conditions 
high-degrees of melt are produced: about 9 wt. % carbonate-, and 30-47 wt.% silicate melt. The 
composition of the silicate melt varies from rhyolitic to phonolitic (K2O > 10 wt %) at increasing 
pressures (Thomsen and Schmidt, 2008).  
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The foregoing processes call for temperatures that are too high for subduction zones with a 
convergence rate (about 3 cm/year) as the Adriatic-Ionian plate (van Keken et al., 2002; Carminati 
et al., 2005). Thus, it is improbable that decarbonation of crustal rocks at depth occurred during 
active subduction in the investigated region. Decarbonation or melting should have initiated 
successively, during a progressive rise of mantle temperatures, resulting from the combined effect 
of the strong extensional tectonics affecting this sector of the Tyrrhenian basin, and of the 
eastward mantle flow (Panza et al. 2007a) behind the retreating Adriatic-Ionian subducting plate. 
This implies that, in this area, crustal lithologies from the retreating Adriatic-Ionian lithosphere 
remained trapped in the mantle wedge at depths exceeding about 130 km before being melted as a 
consequence of back arc isotherm uprise. Present-day mantle temperatures beneath the Western 
Mediterranean, away from the active subducting Ionian plate, are estimated at 1260-1320°C at 
depths greater than 105 km (Carminati et al., 2005), and such a thermal regime would favor 
melting of subducted crustal lithologies with respect to decarbonation reactions, generating 
carbonate and (hydrous) silicate melts (cf. Fig. 6a). 

Possible mantle evolution can be evaluated by experimental models in the peridotite-CO2 
system, reported in Fig. 6, which indicate CO2 as the most important controlling compound on 
both the temperature of melting of peridotite, and on the composition of the produced melt (Fig. 
6a; Dalton and Presnall, 1998; Dasgupta and Hirschmann, 2006; 2007a, b; Dasgupta et al., 2007). 
Since nominally volatile-free mantle minerals can dissolve only a few ppm CO2 (Keppler et al., 
2003), carbonate phases may form at very low CO2 concentrations, and abruptly induce a sharp 
decrease in peridotite partial melting temperatures (Fig. 6a); peridotite melting would commence 
with low fractions of carbonate-rich melts. At 3 GPa and 1300°C, 0.1 wt % of carbonate melt is in 
equilibrium with the peridotite mantle, while transition to carbonate-rich silicate melts (> 2 wt % 
of melt), requires temperature up to 1450°C (Dasgupta et al., 2007).  

Therefore, the amount and composition of mantle melts in the enriched mantle zone (i.e. 
low-velocity wedge) would depend, among other parameters, on temperature. Theoretically, on a 
further temperature increase, mantle melting enhancement might generate dominantly silicate-rich 
melts with a carbonate component, promote channeling, and ultimately volcanism. At the inferred 
present-day temperatures of 1260-1320°C, the mantle beneath Western Mediterranean away from 
active orogenic volcanism can preserve low fractions of molten carbonates (Fig. 6a). Conversely, 
in those zones not far away or above the subducting plate, higher temperature fluxes might induce 
the highest degrees of partial melting, generating CO2-rich magmas (i.e., the low-velocity ledge 
beneath the Campania volcanoes and the Aeolian arc; Fig. 4a and b).  

6.3 Proposed Regional evolution 

According to our model, the tomographic images of the shallow low-velocity-layer represent 
carbonated partially molten, subducted crustal material mixed with mantle rocks at depths above 
130 km (Fig. 6b). Metasomatic melts, would be constituted by a carbonate, and a hydrous silicate 
component, via melting of carbonated crustal lithologies, as experimentally determined (see 
section 6.2). The silicate component of this melt represents an important metasomatic agent adding 
SiO2, LREE, and LILE to the mantle; progressive crystallization of silicate minerals from the 
metasomatic silicate component may result in an increasing carbonate-rich fraction in melts, which 
might induce extensive dissolution and oriented recrystallization of olivine (Dasgupta and 
Hirschmann, 2006). We might speculate that silicate and carbonate melts preserved as inclusions 
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in spinel peridotites from Vulture illustrate the ongoing mantle refertilization, started more than 
200.000 year ago. 

Carbonate addition to the mantle via subduction should be considered as a “one-shot” 
event, whose longevity depends on the timing of the geodynamic evolution in the investigated 
area. Mantle upwelling for low fractions of carbonate melt is “fast”, and estimated between 100 - 
1000 m in 0.1-1 M.y. (Hammouda and Laporte, 2000). Resulting ascent times are compatible with 
the timescale of the Adriatic-Ionian subduction retreat and may account for the persistence of the 
low-velocity layer also in those zones were subduction ceased around 30 M.y. ago (Balearic Sea).  

While carbonate melts accumulate and persist in the shallow low-velocity mantle zone 
because of present day temperatures, part would outgas at 2 GPa (Fig. 6b). Degassing of CO2 
would result in stiffening of the more viscous silicate melt component, with consequent cessation 
of the processes, if temperatures are not further increased. Released CO2 will temporarily halt (and 
tend to pool) above this pressure threshold to form diffuse and/or restricted gas-rich regions in the 
upper mantle (Fig. 6b). CO2 could spread in the subcontinental lithosphere as isolated small 
bubbles confined at mineral grain boundaries, although we cannot exclude that CO2 may coalesce 
to form larger (over pressurized?) reservoirs.  

In Italy, non-volcanic high CO2 flux is associated with the main crustal geological 
features, thus it is very likely that active tectonics represent the driving mechanism for mantle CO2 
release from crustal depths (Miller et al., 2004; Ventura et al., 2007). Deep strike-slip faults, such 
as the 41° N parallel line, would constitute a possible fast way for upward CO2 mantle rise and 
accumulation in the lower crust (see Mofete d’Ansanto, in Table 1). Upper mantle buoyancy could 
also allow mantle CO2 upwelling towards the Moho and the lower crust. Aoudia et al. (2007) and 
Panza and Raykova (2008) investigated the role of buoyancy forces with respect to the ongoing 
slow and complex lithospheric deformations in the uppermost mantle along Central Italy, revealed 
by the very recent GPS measurements and by the unusual subcrustal seismicity distribution. These 
Authors proposed that buoyancy forces, resulting from the heterogeneous density distribution in 
the lithosphere, govern the present-day deformation within Central Italy.  

Upper mantle buoyancy may explain the upwelling towards the Moho and the lower crust, 
of otherwise inert CO2. Deep CO2 is indeed a fluid phase with peculiar characteristics: it is very 
compressible and practically immobile (e.g., θ > 60°), but at the same time it is highly volatile (d = 
1.15 – 1.2 g/cm3 in the depth range from 60 to 80 km). For these reasons, CO2 could not migrate 
until the porosity reaches high values (> 8 %).It is then likely to ascend “explosively”, facilitating 
earthquakes, not only at 4-8 km from the surface, but also at mantle depths, close to the Moho.  

 
6.4 Aeolian arc and Etna CO2 emission 

In the Western Mediterranean, further massive CO2 degassing occurs from active volcanoes, 
which contributes significantly to the total budget of geological emissions (Fig. 1; Table 1). 
Aeolian volcanoes, do not show any anomalous CO2 flux with respect to typical magmas 
generated in a mantle modified by active subduction (see CO2 output from Stromboli in Table 1). 
Conversely, Etna volcano alone constitutes an outstanding CO2 emission anomaly in the centre of 
Mediterranean (Table 1). Etna is away from low-velocity mantle zones (Fig. 4; Panza et al., 2007b; 
Peccerillo et al., 2008) and, therefore, the explanation offered for the subduction-related volcanic 
areas of the Italian peninsula cannot be extended to this volcano.  
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In principle, CO2 emission at Etna may reveal some interaction between magma and 
carbonate wall rocks, since the thick carbonate sequences of the Hyblean foreland are believed to 
be present beneath Etna (e.g. Grasso, 2001). Oxygen isotope data reported by Viccaro and 
Cristofolini (2008) are higher than mantle values (δ18O ~ +6.1 to + 7.1), which would support 
magma contamination. However, Frezzotti et al. (1991) report evidence for deep CO2 degassing at 
Etna volcano by mixed CO2 + basaltic melt inclusions. Measured CO2 densities indicate pressures 
of 0.7 GPa (about 25 km of depth) at 1300°C, which correspond to more than 7,000 ppm CO2 in 
the  magma (Armienti et al., 1996). Allard et al. (1997) determined even higher CO2 contents in 
Etna magmas (1.23 wt. % CO2, based on S/C ratios in the magma), consistent with deep degassing 
(50 km). According to Allard et al. (1997; 2006), CO2 degassing from volatile-rich Etna basalts is 
related to the shallow mantle diapiring at the African-European plate boundary.  

All these lines of evidence lead to the conclusion that the anomalous CO2 emission 
appears to be a mantle-related process (Allard et al., 1997; D’Alessandro et al., 1997). We propose 
two possible models of carbonate recycling to explain the anomalous CO2 emission at Etna. They 
both lean on the particular geodynamic setting of the Etna volcano. There is a growing evidence 
that Etna, although being a typical OIB-type volcano, bears geochemical evidence (e.g. enrichment 
in K and Rb, and B-isotopes) for the presence of subduction components, as discussed earlier 
(Condomines et al., 1995; Nakai et al., 1997; Schiano et al., 2001; Tonarini et al., 2001; Allard et 
al., 2006). Gvirtzman and Nur (1999) and Doglioni et al. (2001) highlight the particular position of 
Etna, which is located along a main lithospheric dextral transform fault system which runs from 
Lipari and Vulcano (Aeolian arc) to the Malta escarpment (the so-called Tindari-Letojanni fault; 
Fig. 3), and separates the foreland Hyblean block at the west from the subducting Ionian plate at 
the east. According to these Authors, the magmatism in this particular geodynamic setting is 
generated at a window along this fault, at the boundary between the foreland and a subducting 
slab. This would allow in the Etna magmatic system contemporaneous OIB-type mantle 
decompression and melting, and CO2-rich fluids inflow from the undergoing slab. The Ionian 
subduction zone is very steep, almost vertical, which favors the channeling of slab-derived fluids 
along the subduction zone and their ascent from very high depth where decarbonation occurs, to 
shallow levels (Abers, 2005). 

An alternative possibility is that the CO2 source is provided by the carbonate sequences of 
the subducted Hyblean foreland. The low dipping angle of the Hyblean foreland (Doglioni et al., 
2001 and references therein) and the absence of deep seismicity beneath the Western Aeolian arc 
(Caputo et al., 1970; 1972) suggest slab breakoff on the west of the Tindari-Letoianni fault. This 
implies detachment and foundering into the mantle of the Hyblean slab beneath the Etna volcanic 
zone. Sinking carbonate sequences of the foreland could release large amounts of CO2 when 
conditions of decarbonation or melting are reached. 

Therefore, present-day CO2 degassing beneath the Western Mediterranean appears to be 
related to carbon-cycling from the crustal portion of subducted slabs into the upper mantle. 
However, whereas along zones directly affected by Oligocene to Present subduction, CO2 
emission is related to the temperature regimes and dynamic conditions that develop behind the 
retreating slab, at Etna the CO2 emission would be generated either by fluid inflow from the Ionian 
subducting plate or from decarbonation of carbonate sequences of the detached foreland sinking 
into the upper mantle. 
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7. Concluding remarks 
 

Present-day massive “cold” CO2 soil degassing, occurring in tectonically active areas located 
above the subduction-enriched mantle wedge (e.g. Tuscany, Northern Latium, Apennines, North 
Sardinia, 41° N parallel line), supports efficient cycling of carbon and its return to the atmosphere 
in the western Mediterranean area.   

We propose that the slab retreat during Oligocene to Present times left in front of itself a 
shallow layer, at a depth of 60-130 km, of very low-velocity mantle material that sits on top of a 
relatively faster low-velocity layer, which is standard for oceanic structures (e.g. Stixrude and 
Lithgow-Bertelloni, 2005). The very low velocities can be indeed associated to attenuation, but 
attenuation affects amplitudes rather than phases and we measure dispersion relations (phase and 
group velocities) at periods of 10 s and larger. The Vs values we get in the uppermost part (60-130 
km of depth) of the mantle low-velocity zone remain very low with respect to the values reported 
for low-velocity zone of oceanic regions at global scale (Stixrude and Lithgow-Bertelloni, 2005), 
even when the upper bound of the Vs range is considered (see Panza et al., 2007a, b), and some 
increment is allowed to account for the attenuation effect through body-waves dispersion 
(Futtermann, 1962; Panza, 1985).  

This layer of very low-velocity mantle material was generated by melting of carbonated 
crustal lithologies, at temperature above 1100 °C. The result is a chemically and physically 
heterogeneous upper mantle beneath the Western Mediterranean. The anomalous non-volcanic 
CO2 flux, which has been detected in Italy in those regions where volcanism is not active or 
absent, would derive from mantle degassing, providing a geological CO2 source, additional to the 
rise of CO2-rich magmas, in this active volcanic region.   

Upper mantle carbonate Earth recycling via subduction and melting of crustal lithologies 
at depths > 130 km, as observed In Western Mediterranean, represents a relevant process in the 
overall Earth deep carbon cycle. The flux of cycled CO2 can be tentatively calculated based on the 
extension of the low-velocity wedge beneath the Western Mediterranean. Typical carbonate-rich 
melts in experimental melting of carbonated lherzolite (Dalton and Wood, 1993) contain about 
45% CO2 by weight. Accepting 0.1 wt% of carbonate melt concentration (cf. Section 6.2), and 
assuming as convenient (but certainly high) 100% degassing, approximately 1.35 Mt of CO2 
(equal to 0.4 Mt carbon) could be released for each km3 of metasomatized mantle. Assuming a 
time scale of 30 M.y., CO2 degassing of the low-velocity wedge beneath the Western 
Mediterranean would conservatively lead to lithosphere-asthenosphere CO2 flux of about 70 
Mt/year, which exceeds yearly CO2 degassing in Italy.  
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Table 1 - Geologic CO2 degassing in Italy 

Volcanic  non-Volcanic 

  
Output (Mt/y)    

Output (Mt/y) 

Crater emission 
Regional   

Etna (1976 - 1985)1, 2 25.5  Central Italy13 > 4 

Etna (1993 - 1997)3 4 - 13  Central Italy14 9.7 - 17 

Stromboli4 1 - 2  Central Apennines15 4 - 13.2 

Vulcano5 0.066  Tuscany and N Latium16 6 

Ground emission   Campania16 3 

Vulcano Fossa crater6 0.073  Soil degassing  

Vulcano plains7 0.027  Latera, Vulsini13 > 0.07 

Vulcano fumaroles8 0.088  Alban Hills16 0.2 

Stromboli9 0.07 - 0.09  Siena graben17 > 0.5 

Vesuvius10 0.5  Ustica18 0.02 

Solfatara, Phl. Fields11  1.8  Gas vents  

Ischia12 0.14  Mefite d'Ansanto13 0.3 

   Rapolano, Tuscany15 0.035 

   Mofeta dei Palici, Sicily19 0.091 

   Geothermal Fields  

   Mt. Amiata, Tuscany20 0.5 

1) Allard et al., 1991; 2) Gerlach, 1991;  3) Allard, et al., 1997; 4) Allard et al., 1994; 5) Baubron et al., 1990 

6) Chiodini et al., 1996; 7) Chiodini et al., 1998; 8) Italiano et al., 1998; 9; Carapezza and Federico, 2000 

10) Frondini et al., 2004; 11) Caliro et al., 2008;  12); Aiuppa et al., 2007; 13) Rogie et al., 2000;  

14) Gambardella et al., 2004; 15) Chiodini et al., 2000; 16) Chiodini et al., 2004; 17) Etiope, 1996;  

18) Etiope, 1999; 19) Di Gregorio et al., 2002; 20) Frondini et al., 2008 
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Fig. 1 -  Distribution of main geological CO2 emission in Italy (gray area), as derived from the on-
line catalogue of Italian gas emissions, INGV-DPCV5 project (http://googas.ov.ingv.it), and of 
petrochemical affinities and ages of the main Plio-Quaternary magmatic centers in Italy, modified 
from Peccerillo (2005).  Volcanic centers marked by white circle bear peridotites. Active 
volcanoes are marked in black. Open symbols refer to outcrops below the sea level. Ages in 
parenthesis. 
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Fig. 2 - Compilation of 3He/4He ratios (R/Ra), and distribution of helium isotopes in Italy, 
measured in gas sampled at surface, and in fluid inclusions from Plio-Quaternary  magma 
phenocrysts (olivine and clinopyroxene) and from mantle xenoliths (Minissale, 2004; Martelli et 
al., 2004; 2008). N = number of measurements. 
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Fig. 3 - Location of the orogenic and anorogenic Plio-Quaternary volcanism in the Western 
Mediterranean (from Peccerillo, 2003), with respect to geological CO2 emission areas.  Numbered 
lines represent the pathway of sections illustrated in Figure 4.  
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Figure 4a 
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Figure 4b 

 

Fig.  4 -  Vs models of the lithosphere-asthenosphere system along three representative sections in 
the Western Mediterranean.  a) Section 1 - The lithosphere-asthenosphere system along the 
TRANSMED III geotraverse, modified from Panza et al. (2007a); the geometry of the base of the 
lithosphere is indicated by the blue line; the limit between upper and lower asthenosphere is 
indicated  (red line). b) Sections 2 and 3, are built from the cellular Vs model of the Tyrrhenian 
Sea and surroundings given by Panza et al. (2007b). In each labeled cell, the hatched zone stands 
for the thickness variability, while, to avoid crowding of numbers, only the average shear velocity 
is reported. The Vs ranges of variability are given in Panza et al. (2007a). Red triangles indicate 
recent and active volcanoes. 
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Fig.  5  - Heat flow map of Italy modified after Della Vedova et al. (2001), reporting the location 
of major CO2 degassing areas. Most non-volcanic CO2 emission occurs in areas of normal heat 
flow. Local high heat flow is associated with subsurface magmas and includes CO2 fluxes from 
major geothermal systems (Larderello and Monte Amiata, in Tuscany). Numbered lines represent 
the pathway of sections illustrated in Figure 4.  
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Fig.  6  - Proposed evolution for lithosphere - asthenosphere degassing beneath the Western 
Mediterranean. a) Pressure-temperature diagram showing the effects of CO2 on the solidus of 
carbonated lithologies in the mantle.  Two different estimates of the peridotite - CO2 solidus are 
reported: CMSA - CO2 after Dalton and Presnall (1998), and Gudfinnsson and Presnall (2005),  
and peridotite - CO2 (2.5 wt %) from Dasgupta and Hirschmann (2006). Dry peridotite solidus in 
the CMAS system is from Gudfinnsson Presnall (2005). Eclogite - CO2 solidus (dry eclogite + 5 
wt % CO2) from Dasgupta et al. (2004). Asterisks (*) corresponds to the KNCFMASH - CO2 
solidus (carbonated pelite + 1.1 wt.% H2O + 4.8 wt.% CO2) from Thomson and Schmidt (2008). 
The effect of carbonates on the composition of melts generated at increasing temperature is 
reported as wt% CO2, based on the CMSA – CO2 system. Gray area = estimated present-day 
mantle temperatures at the inferred pressures (Carminati et al., 2005). b) Application of the 
experimentally determined melting relationships for carbonated peridotite, and crustal lithologies 
to illustrate present mantle processes and metasomatism beneath the Western Mediterranean. 
Melting of sediments and/or continental crust of the subducted Adriatic-Ionian (African) 
lithosphere, generates carbonate-rich (hydrous-silicate) melts at pressure >  4 GPa (130 km) and T 
> 1260°C. Due to their low density and viscosity, such melts can migrate upward through the 
mantle, forming a 70 km thick carbonated partially molten CO2-rich mantle layer recorded by 
tomographic images. Upwelling of carbonate-rich melts to depths less than 60 - 70 km, induces 
massive outgassing of CO2 in the lithospheric mantle, with cessation of Vs attenuation. Buoyancy 
forces, probably favored by fluid overpressures, and tectonics might allow further CO2 upwelling 
to the Moho and the lower crust, and, ultimately, outgassing at the surface. 
 


