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Post-K–Pg Boundary Deccan magmatism is well known from the Mumbai area in the Panvel flexure zone.
Represented by the Salsette Subgroup, it shows characters atypical of much of the Deccan Traps,
including rhyolite lavas and tuffs, mafic tuffs and breccias, spilitic pillow basalts, and ‘‘intertrappean’’
sedimentary or volcanosedimentary deposits, with mafic intrusions as well as trachyte intrusions
containing basaltic enclaves. The intertrappean deposits have been interpreted as formed in shallow mar-
ine or lagoonal environments in small fault-bounded basins due to syn-volcanic subsidence. We report a
previously unknown sedimentary deposit underlying the Dongri rhyolite flow from the upper part of the
Salsette Subgroup, with a westerly tectonic dip due to the Panvel flexure. We have obtained concordant
40Ar/39Ar ages of 62.6 ± 0.6 Ma (2r) and 62.9 ± 0.2 Ma (2r) for samples taken from two separate outcrops
of this rhyolite. The results are significant in showing that (i) Danian inter-volcanic sedimentary deposits
formed throughout Mumbai, (ii) the rock units are consistent with the stratigraphy postulated earlier for
Mumbai, (iii) shale fragments known in some Dongri tuffs were likely derived from the sedimentary
deposit under the Dongri rhyolite, (iv) the total duration of extrusive and intrusive Deccan magmatism
was at least 8–9 million years, and (v) Panvel flexure formed, or continued to form, after 63 Ma, possibly
even 62 Ma, and could not have formed by 65–64 Ma as concluded in a recent study.

� 2013 Elsevier Ltd. All rights reserved.
1. Flood basalts, rifted continental margins, and monoclinal 1949), as an extensional fault structure (Dessai and Bertrand,

flexures

Continental flood basalt (CFB) provinces are frequently
associated with rifted continental margins, and typically exhibit
monoclinal flexures at the rifted margins. Prominent examples
are the Karoo province of southern Africa, the Paraná province
of South America, the East Greenland province, and the Deccan
province of India. In a monoclinal flexure zone, the otherwise
essentially flat-lying CFB lava pile shows significant seaward dips
(as much as 45� in the Karoo), and this is where significant volumes
of evolved magmas like rhyolites and trachytes, scarce over the
rest of the province, are concentrated (e.g., Nielsen and Brooks,
1981; Lightfoot et al., 1987; Cox, 1988; Peate, 1997; Klausen and
Larsen, 2002; Klausen, 2009).

The Panvel flexure of the Deccan province runs parallel to the
NNW–SSE-trending western Indian rifted margin for >150 km,
and has a width of �30 km (see Fig. 1b of Sheth et al., 2014). It
has been suggested to have formed due to simple monoclinal
bending of the basalt pile (Blanford, 1867; Wynne, 1886; Auden,
1995), and as a reverse drag structure on an east-dipping listric
master fault (Sheth, 1998). These models are not completely
mutually exclusive, but another important issue is the timing of
flexure formation relative to flood volcanism and continental
breakup. Understanding this requires, besides careful field work,
accurate and precise radio-isotopic dating of fresh, alteration-free
volcanic units from key stratigraphic positions. Because all these
conditions rarely occur together, and because geochronological
studies have focussed on the thickest CFB sections to evaluate their
links to mass extinctions (e.g., Baksi, 2014 and references therein),
critical age data on key eruptive units in flexure zones are often
scarce.

Hooper et al. (2010) have argued, based on geochemical and
40Ar/39Ar age data for mafic lavas and dykes in the Panvel flexure
zone, that the flexure formed by 65–64 Ma, soon after the Deccan
CFB eruptions. Here, we present two 40Ar/39Ar ages on a key
rhyolite unit from the Dongri area of Mumbai, also in the Panvel
flexure zone. Based on geological considerations which we
describe in detail, and the 40Ar/39Ar ages, we conclude that the
Panvel flexure formed as late as 63 Ma, possibly even 62 Ma, and
could not have formed by 65–64 Ma. This result is significant for
understanding the tectonic evolution of the western Indian rifted
margin.
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Fig. 1. (a) Map of India and the Deccan Traps (gray), showing the Western Ghats type section, Mumbai, and other localities of Deccan intertrappean and infratrappean
sedimentary deposits (stars), some of which are named (based on Shekhawat and Sharma, 1996; Jay and Widdowson, 2008). (b) Map of Mumbai, showing the localities of the
intertrappean deposits (stars), including the newly discovered one at Dongri (based on Sethna, 1999; Singh, 2000; Cripps et al., 2005; this study). Curved arrows indicate the
Panvel flexure. (c) Geological map of the Uttan–Dongri area (based on Zellmer et al., 2012 and references therein), showing the locations of the outcrops studied in the present
work.
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2. Deccan geology of Mumbai, Panvel flexure zone

Deccan flood basalt volcanism (Fig. 1a) overlapped with, and has
been directly implicated in, the major Cretaceous–Palaeogene
(K–Pg) Boundary mass extinctions at �65.5 Ma (e.g., Keller et al.,
2008). Though dominated by tholeiitic flood basalts, the Deccan
province shows alkalic and silicic rocks concentrated in regions
such as Mumbai and the Panvel flexure zone, and the Saurashtra
peninsula, both on the western Indian rifted margin (e.g.,
Sukheswala and Poldervaart, 1958; Sukheswala, 1974; Sethna and
Battiwala, 1977; Godbole and Ray, 1996; Sheth et al., 2011, 2012).

The Ghatkopar–Powai area of Mumbai (Fig. 1b) exposes prom-
inently seaward-dipping (17�) tholeiitic basalt flows intruded by
many tholeiitic dykes (Sheth, 1998; Sheth et al., 2014). The south-
ern and western parts of Mumbai show volcanic and volcanosedi-
mentary deposits as well as intrusions of considerable
compositional diversity, all belonging to a post-K–Pg Boundary
phase of Deccan magmatism (Sethna and Battiwala, 1977, 1980;
Sethna, 1999; Sheth et al., 2001a,b; Cripps et al., 2005). This Danian
sequence also prominently dips west. Sethna (1999) named it the
Salsette Subgroup, and considered it to be younger than the entire
Western Ghats stratigraphic sequence (Table 1). He divided the
Salsette Subgroup into a Mumbai Island Formation, made up of
subaqueous lavas including spilitic pillow basalts, tuffs, and shales,
followed by a Madh–Uttan Formation made up of rhyolite lava
flows, followed by a Manori Formation, comprising trachyte
intrusions (Table 1). The ‘‘intertrappean’’ sedimentary beds of tuffs,
clays and shales have yielded fossil frogs, ostracods, turtle skulls
and crocodilian eggshell fragments (e.g., Owen, 1847; Carter,
1852a,b; Blanford, 1867, 1872; Chiplonker, 1940; Cripps et al.,
2005). The shales contain considerable volcanic ash input, and
are often carbonaceous (Singh, 2000).

Sheth et al. (2001a,b) dated two distinctly west-dipping
trachyte units from Manori and Saki Naka (Fig. 1b) at
60.4 ± 0.6 Ma (2r) and 61.8 ± 0.6 Ma (2r) respectively (40Ar/39Ar),
and the Gilbert Hill basalt intrusion near Andheri (Fig. 1b) at
60.5 ± 1.2 Ma (2r). Interpreting the trachytes as dipping lava flows,
they suggested that the Panvel flexure had formed after 60 Ma.
Careful reading of earlier work on these trachytes (Sethna and
Battiwala, 1974, 1976) as well as more detailed field and geochem-
ical work (Zellmer et al., 2012) shows that these trachytes are
exhumed subvolcanic intrusions, and their 60–62 Ma ages cannot



Table 1
Mumbai volcanic stratigraphy relative to the Western Ghats lava stratigraphy.

Group Subgroup Formation Rock types

Salsette Manori Trachyte intrusions with mingled basalt enclaves
Madh–Uttan Rhyolite lava flows
Mumbai Island Hyaloclastites, spilites, basalts and shales

Deccan Basalt Group Wai Poladpur, Ambenali, Mahabaleshwar, Panhala, and Desur Subaerial tholeiitic flood lavas
Lonavala Khandala and Bushe Subaerial tholeiitic flood lavas
Kalsubai Jawhar, Igatpuri, Neral, Thakurvadi, and Bhimashankar Subaerial tholeiitic flood lavas

Notes: The Salsette Subgroup (Sethna, 1999) has been placed by him above the three stratigraphic subgroups of the Deccan Basalt Group in the Western Ghats sequence
(Subbarao and Hooper, 1988 and references therein). Cripps et al. (2005) have considered the Salsette Subgroup to be contemporaneous with the last eruptions of the Wai
Subgroup lavas.
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constrain the age of the Panvel flexure. Ages obtained on eruptive
units can, but no radio-isotopic ages have been obtained on any
of the Mumbai rhyolites with the exception of a Rb–Sr isochron
age of 61.5 ± 1.9 Ma (Lightfoot et al., 1987). Sheth and Ray (2002)
questioned this age on several grounds including possible mixing
relationships.

In this study, we have obtained two 40Ar/39Ar ages on the
Dongri rhyolite flow from the Madh–Uttan Formation of the
Salsette Subgroup. We have also found, under this rhyolite, a hitherto
unknown sedimentary deposit, as well as a tuff deposit nearby
which contains shale fragments. We now describe the geology of
these rock units with some interpretations about their formation
environment, and follow with details of the 40Ar/39Ar dating of
the Dongri rhyolite and its bearing on the question of the age of
the Panvel flexure.
Fig. 2. (a–c) Field photographs of the Dongri rhyolite and sedimentary deposit.
Students provide a scale.
3. Geology of the Dongri rhyolite and associated rock units

3.1. The rhyolite

A detailed geochemical study of the Mumbai rhyolites was
presented by Lightfoot et al. (1987) who mentioned up to five
rhyolite units 20–100 m thick and with a strike length of 20 km.
The Dongri rhyolite is a thick (>70 m), prominently columnar-
jointed lava flow exposed in the Darkhan quarry just to the south
of Dongri village, east of the Dongri–Gorai road (Fig. 1c). The
rhyolite is light brown, fine-grained, essentially aphyric and non-
vesicular, and made up of quartz and K-feldspar. We sampled its
exposed base in the quarry (sample UTRH). Owing to the westerly
dip the Dongri rhyolite flow is encountered at a lower level in a
valley on the western side of the Dongri–Gorai road, 1.7 km
south–southwest of the Darkhan quarry and 800 m north of the
Judicial Institute (Fig. 1c).

Here the rhyolite shows well-developed columns which dip
steeply east, suggesting that the flow dips �10� west (Fig. 2a and
b), based on the general principle that columnar joints in a solidi-
fying tabular igneous body (whether a lava flow, sill, or dyke) prop-
agate perpendicular to the isotherms (surfaces of equal
temperature), which in an undisturbed magma body are parallel
to its margins (e.g., Spry, 1962; DeGraff and Aydin, 1987; Lyle,
2000). We are aware of many possible complications, as when col-
umns form in highly random orientations in the ‘‘entablature’’
zones of solidifying lava flows, typically due to ingress of rainwater
(e.g., Tomkeieff, 1940; Long and Wood, 1986; De, 1996). There are
also cases where stacks of parallel columns may be inclined to the
flow margins, owing to late-stage flow (Waters, 1960). In the
present case, westward dip of the Dongri rhyolite flow is visible
in an oblique view afforded by the exposure (Fig. 2b). Besides, all
Mumbai rhyolites including those at Madh (Fig. 1b), as well as
the other Salsette Subgroup units, have westward dips, as do also
the Ghatkopar–Powai tholeiites (Sheth et al., 2014). For the latter
reason, the westward dip of the Dongri rhyolite cannot be ex-
plained in an isolated manner by invoking eruption of the Dongri
rhyolite on an already inclined surface. The consistent westward
dips shown by all these rock units are tectonic dips produced by
the Panvel flexure.

The Dongri rhyolite is underlain by a sedimentary deposit
(Fig. 2a and c). We sampled the base of the rhyolite flow (sample
UTRH-1) just above the sedimentary deposit, and this is
petrographically similar to the Darkhan quarry rhyolite. We
consider the two samples UTRH and UTRH-1 to represent the same
lava flow.
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3.2. The sedimentary deposit

This deposit, discovered by us in March 2011, was not exposed
during many prior visits to the area over several years, but has
become available due to recent excavation for clay under the rhyolite
by local villagers. The outcrop becomes inundated by water during
the vigorous Mumbai monsoons due to its low elevation (only a
few meters above sea level) and proximity to the coastline
(1 km). The exposed thickness of the sedimentary deposit is
2.5–3 m, and the exposed lateral extent �20 m (Fig. 2a and c). Dark
gray shales in the lower part of the Dongri sedimentary deposit are
overlain by light gray, patchy yellow–gray, dark brown, and light
gray shales and clays (Fig. 2c). They are all laminated on the milli-
meter-scale, soft and fragile. Intertrappean sedimentary deposits in
the Deccan Traps are generally only a few meters thick, an excep-
tion being a 150-m-thick black carbonaceous shale encountered in
a construction tunnel at Bandra (Fig. 1b), indicating long local vol-
canic quiescence there (Sethna, 1999).
Fig. 3. (a and b) Hand specimens of the Dongri tuff. (b) Shows a large fragment. Ruler is
basaltic fragment (shown by white dashed lines); cpx, clinopyroxene; pl, plagioclase; qz
3.3. The Dongri tuff

We have found a tuff deposit on the 96 m hill exactly west of
the Darkhan rhyolite quarry (Fig. 1c), in a residential property
undergoing construction work in 2007. Because the volcanic
sequence becomes younger westwards, we consider this tuff to
overlie the Dongri rhyolite. The tuff has a light gray ash matrix
with many dark gray shale fragments, a few reaching 2 cm
(Fig. 3a). The tuff also shows occasional subangular to subrounded
fragments 5–6 cm in diameter, made up of very fine, vesicular
material and lacking internal structure (Fig. 3b). These are proba-
bly the same as the ‘‘coalesced ash bombs’’ described by Sukhesw-
ala (1956) from Mumbai intertrappean volcanosedimentary
deposits, and by Cripps et al. (2005, sample 3/99) from the Amboli
quarry at Jogeshwari (Fig. 1b).

Photomicrographs of the Dongri tuff are given in Fig. 3c and d.
In thin section this tuff shows shows shale fragments (isotropic),
basalt fragments, as well as clinopyroxene crystals. The tuff has
in centimeters. (c–f) Photomicrographs of the Dongri tuff. The abbreviations are: bf,
, quartz; sh, shale; sp, spherulitic quartz.
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experienced much silicification, with veins of quartz and
spherulitic quartz infilling shale fragments. Singh (2000) classified
Mumbai intertrappean tuffs into vitric and lithic tuffs from petro-
graphic studies, though these tuffs also contained crystals of
pyroxene and feldspars. He observed much devitrification of glass,
and diagenesis. Sukheswala (1956) also identified pyroxenes and
feldspars in the Worli ash beds. Based on the Dongri tuff’s compon-
entry we term it a mixed lithic–crystal–vitric tuff (following the
terminology of Schmid, 1981).

3.4. Interpretation

The sedimentary deposit underlying the Dongri rhyolite is
consistent with the Mumbai volcanic stratigraphy proposed by
Sethna (1999) (Table 1), in which the Madh–Uttan–Dongri area
rhyolite lavas overlie the intertrappean shales (and older lavas)
of the Mumbai Island Formation. The Dongri area shows that
volcanism and sedimentation succeeded each other during the
deposition of the Salsette Group, as they did over much of Mumbai
(e.g., Sethna, 1999; Cripps et al., 2005). Detailed studies of the
Salsette Group intertrappean deposits by Singh (2000) and Cripps
et al. (2005) have indicated deposition in shallow marine or
lagoonal environments, in small fault-founded basins, due to syn-
volcanic subsidence.

The Dongri sedimentary deposit explains the occurrence of
fragments of baked carboaceous shale in tuffs of the Uttan–
Dongri area as reported by Sethna and Mousavi (1994). Shale
baking may have been caused by intrusions, as at the Amboli
quarry (Singh, 2000), or by incorporation of the shale fragments
in hot erupting ash as in the Uttan–Dongri area. The angularity
of the volcanic and shale fragments and crystal shapes in the
Dongri tuff suggests minimum transport (cf. Singh, 2000). The
lack of bedding or laminations suggests rapid deposition, possibly
from vents nearby. The pale color of the tuff despite the mafic
content may be due to bleaching by vapors. The ash aggregates
(Fig. 3b) appear to be of the nature of large accretionary lapilli
(see also Cripps et al., 2005), though they lack the typical concen-
tric structure, and would then indicate wet explosive eruptions
(e.g., Brown et al., 2010). The shale fragments in the Dongri tuff
do not appear to have come from explosions under the exposed,
undisturbed sedimentary deposit. The explosions probably
occurred under the current outcrop of the tuff, and given the
1 km distance between the sedimentary outcrop and the tuff,
the lateral subsurface extent of the former is at least that much.
Carter (1852b) has mentioned that the small rocky islets west of
Uttan (Fig. 1c) are also made up of tuffs.
4. 40Ar/39Ar dating of the Dongri rhyolite

A key point we make is that the westward dips of the Dongri
rhyolite flow, the rest of the Salsette Subgroup, and the
Ghatkopar–Powai tholeiites, are tectonic, and were acquired after
eruption when the Panvel flexure formed. The crystallization age
(=eruption age) of the Dongri rhyolite flow, from the uppermost
levels of the Salsette Subgroup, should therefore provide an upper
limit on the formation of the Panvel flexure. With this understand-
ing, we carried out 40Ar/39Ar dating of the two samples of the
Dongri rhyolite flow.

4.1. Analytical methods

Rock chips of the Dongri rhyolite (samples UTRH and UTRH-1)
were crushed and sieved and the 120–180 lm size-fraction was
leached with a 1% HCl solution to eliminate secondary carbonates.
The sample material was cleaned in deionised water in an
ultrasonic bath and about 0.2 g of each was packed in aluminum
capsules. The Minnesota hornblende reference material (MMhb-
1) of age 523.1 ± 2.6 Ma (Renne et al., 1998) and high purity CaF2

and K2SO4 salts were used as monitor samples. High purity nickel
wires were placed in both sample and monitor capsules to monitor
the neutron fluence variation, which was typically about 5%. The
aluminum capsules were kept in a 0.5 mm thick cadmium cylinder
and irradiated, in two separate batches, in the light-water moder-
ated CIRUS reactor at the Bhabha Atomic Research Centre (BARC),
Mumbai, for �100 h. The irradiated samples were repacked in
aluminum foil and loaded on the extraction unit of a Thermo-Fisher
Scientific noble gas preparation system. Argon was extracted in a
series of steps up to 1400 �C in an electrically heated ultra-high
vacuum furnace. After purification using Ti–Zr getters, the argon
released in each step was measured with a Thermo-Fisher ARGUS
mass spectrometer located at the National Facility for 40Ar–39Ar
Geo-thermochronology in the Department of Earth Sciences, IIT
Bombay. The mass spectrometer is equipped with five Faraday
cups fitted with 1011 ohm resistors.

Interference corrections for Ca- and K-produced Ar isotopes
based on analysis of pure CaF2 and K2SO4 salts were (36Ar/37Ar)Ca,
(39Ar/37Ar)Ca and (40Ar/39Ar)K = 0.000438, 0.000921 and 0.004451,
respectively, for sample UTRH. The same parameters were
0.000334, 0.000762, and 0.000808, respectively, for sample
UTRH-1. 40Ar blank contributions were 1–2% or less for all
temperature steps. The irradiation parameter J for the sample
was corrected for neutron flux variation using the activity of nickel
wires irradiated with each sample. Value of fluence-corrected J is
0.001545 ± 0.000006 for UTRH, and 0.002317 ± 0.000009 for
UTRH-1.
4.2. Results

The 40Ar/39Ar step heating data were plotted using the program
ISOPLOT v. 3.75 (Ludwig, 2012) and are tabulated in Online Appen-
dix I. We define a plateau in an argon release spectrum as compris-
ing a minimum of 60% of the total 39Ar released and four or more
successive degassing steps with mean ages overlapping at the 2r
level including the error contribution from the J value (e.g., Sen
et al., 2012).

Sample UTRH yielded a 18-step plateau age of 62.6 ± 0.6 Ma
(2r), with the age spectrum comprising 69.0% of total 39Ar released
(Fig. 4a). Higher-temperature steps than the plateau spectrum
yielded progressively increasing apparent ages, which we ascribe
to excess argon (see e.g., Lanphere and Dalrymple 1971, 1976;
Kaneoka, 1974, 1980; Balasubrahmanyan and Snelling, 1981;
Iwata and Kaneoka, 2000; Kelley, 2002). This excess argon may
reside in fluid inclusions in minerals (e.g., Kelley, 2002). The sam-
ple UTRH’s isochron age of 62.9 ± 0.7 Ma (2r) and inverse isochron
age of 62.9 ± 0.6 Ma (2r) are statistically indistinguishable from
the plateau age (Fig. 4b and c).

Sample UTRH-1 also yielded a 18-step plateau age of
62.9 ± 0.2 Ma (2r), with the age spectrum comprising 90.1% of
total 39Ar released (Fig. 5a). Its isochron age of 62.9 ± 0.6 Ma
(2r) and inverse isochron age of 62.9 ± 0.3 Ma (2r) are statisti-
cally indistinguishable from the plateau age (Fig. 5b and c). The
concordant plateau, isochron and inverse isochron ages of both
rhyolite samples, the large amount of total released 39Ar for the
plateau steps, the acceptable MSWD values of the isochron and
inverse isochron, as well as the atmospheric value (295.5) of the
40Ar/36Ar ratio of trapped argon given by their intercepts, suggest
that these ages represent crystallization ages. We take the identi-
cal 40Ar–39Ar plateau ages of 62.6 ± 0.6 Ma (2r) and 62.9 ± 0.2 Ma
(2r) as the crystallization and eruption age of the Dongri rhyolite
flow.
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5. Discussion

5.1. The distribution of intertrappean sedimentary deposits in Mumbai

Fig. 1b shows the localities of intertrappean sedimentary
deposits in Mumbai. The northernmost outcrops so far known
were at Malad and Kandivli (and have been destroyed since they
were originally mapped). The outcrop and subsurface rock samples
studied in detail by Cripps et al. (2005) came from the Amboli
quarry at Jogeshwari (which has since been destroyed), as well
as Bandra and Worli. The new find of the sedimentary deposit un-
der the Dongri rhyolite (Fig. 1b) shows that these deposits have a
Mumbai-wide distribution. This is not to say that all these
localities represent a single phase of sedimentation or a continuous
sedimentary basin, because they have their differences. The Worli
and Bandra tunnel intertrappean sequences are dominated by
shales, including an almost uninterrupted 150 m thick shale (Set-
hna, 1999), suggesting a long local eruptive hiatus. The Amboli
intertrappeans had much more pyroclastic input, from eruption
centers located nearby (Singh, 2000; Cripps et al., 2005). It can
be said that isolated small, shallow basins developed from time
to time in the western parts of Mumbai due to syn-volcanic
faulting and subsidence, and these became the depocenters for
sediments and pyroclastic products (Cripps et al., 2005). All would
nevertheless be broadly correlatable in age with the same faunal-
floral assemblage. The 40Ar/39Ar ages of the Dongri rhyolite flow
(62.6 ± 0.6 Ma and 62.9 ± 0.2 Ma, 2r) indicate that the Dongri
sedimentary deposit was formed no later than 63–62 Ma.

Localities of intertrappean sedimentary beds in the entire
Deccan Traps are few and widely spaced (Fig. 1a). With the excep-
tion of those at Rajahmundry on the eastern Indian coast, and
Mumbai on the west coast, the interior ones have been interpreted
as lacustrine and palustrine, and formed under semiarid condi-
tions, during Maestrichtian time (e.g., Mohabey et al., 1993; Khosla
and Sahni, 2003). In contrast, Mumbai intertrappeans represent
shallow marine or lagoonal conditions during Danian time (Cripps
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outlines and the non-plateau steps with dark blue outlines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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et al., 2005). Interestingly, at Jhilmili in central India there was a
brief period of incursion of a shallow sea, indicated by Danian
planktonic foraminifera (Keller et al., 2009). Tertiary-age Deccan
intertrappeans are extremely scarce (Singh and Kar, 2002),
underscoring the significance of the newly discovered Dongri
sedimentary deposit.

5.2. The overall duration of Deccan magmatism

Sheth et al. (2001a,b) argued, based on their 40Ar/39Ar ages of
62–60 Ma on the Manori and Saki Naka trachytes and the Gilbert
Hill basaltic intrusion, and noting alkaline magmatism at
�68.5 Ma in the northwestern Deccan Traps (Basu et al., 1993),
that the total duration of Deccan magmatism was at least 8–9
million years. The new 40Ar/39Ar ages of 63–62 Ma for the Dongri
rhyolite flow, presented here, provide further evidence that both
intrusive and extrusive activity in the Deccan Traps occurred well
into the Palaeocene.
5.3. The timing of formation of the Panvel flexure

Hooper et al. (2010) have suggested, based on geochemical and
40Ar/39Ar dating work on coastal lavas and dykes of the Panvel
flexure zone south of Mumbai, that the Panvel flexure had already
formed by 65–64 Ma. Hooper et al. (2010) dated a subaqueous
spilitic basalt flow from the lower part of the Salsette Subgroup
(sample Bom18, 40Ar/39Ar) at 64.55 ± 0.59 Ma (2r). They argued
that the Mumbai Island Formation (including many spilitic pillow
basalts like Bom18) had formed in a seaway developed due to the
Panvel flexure and the associated normal faulting, which therefore
should have occurred by 65–64 Ma.
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The Madh–Uttan–Dongri rhyolite lavas are much younger than
this, noting our 40Ar/39Ar ages of 62.6 ± 0.6 Ma (2r) and
62.9 ± 0.2 Ma (2r) for the Dongri rhyolite. If the Panvel flexure
had formed by 65–64 Ma as Hooper et al. (2010) suggest, how
did the youngest rhyolite lavas acquire prominent westward dips,
with the rest of the Salsette Subgroup and the Ghatkopar–Powai
tholeiitic sequence? And if the spilitic basalts formed after the
Panvel flexure had developed, how did they acquire westward
tectonic dips?

The basic geological observation that the whole Mumbai
sequence is west-dipping, from the Ghatkopar–Powai tholeiites
through the lowermost spilitic pillow basalts to the uppermost
rhyolite lavas of the Salsette Subgroup, implies that the whole
sequence was affected by the Panvel flexure as a single package. It
is possible that the Panvel flexure formed in a single, rapid event,
which must then postdate the eruption of the youngest rhyolite
lavas. This scenario would be consistent with a tectonic model of
the Panvel flexure involving a listric master fault in the western In-
dian margin (Sheth, 1998). Alternatively, the Panvel flexure may
have developed incrementally, over time, such that it continued to
form after the youngest rhyolite lavas, and flexed them after they
formed. This scenario appears consistent with a tectonic model of
the Panvel flexure involving extensional faulting, repeated dyke
injection and volcanic loading, of the type proposed for the East
Greenland flexure by Klausen and Larsen (2002). In either scenario,
the Panvel flexure cannot predate the 64–65 Ma spilitic basalt lavas.

If so, what about the subaqueous eruption, seaway, and the
Panvel flexure postulated by Hooper et al. (2010)? We believe that
a seaway (or a quasi-marine basin) existed at 65–64 Ma, but this
does not require the Panvel flexure. In other words, such a basin
probably developed at 65–64 Ma due to early extension and subsi-
dence along the rifted margin, the spilitic pillow basalts of the
Mumbai Island Formation formed in it, as did other volcanosedi-
mentary units, and finally the Madh–Uttan–Dongri rhyolites were
erupted much later, some partly under water (Sethna and Mousavi,
1994) and others like the Dongri rhyolite subaerially. The Panvel
flexure only formed subsequently, imparting a tectonic dip to all
units down from the rhyolites to the spilitic pillow basalts and
the Ghatkopar–Powai tholeiites. Considering the analytical
uncertainties on the two 40Ar/39Ar ages of the Dongri rhyolite,
the Panvel flexure formed no earlier than 63.2 Ma, and may have
formed as late as 62 Ma. The 65–64 Ma spilitic pillow basalts of
Hooper et al. (2010), far from requiring the Panvel flexure to form,
were affected and tilted by the Panvel flexure 2–3 million years
after their eruption.
6. Conclusions

The mechanism and timing of formation of monoclinal flexures,
found in CFB provinces located on rifted continental margins, has
been a contentious issue. In the Mumbai area of the Deccan Traps
CFB province, India, the volcanic sequence shows a prominent
westerly (seaward) dip and forms the western limb of the Panvel
flexure. We have obtained precise and concordant 40Ar/39Ar ages
of 62.6 ± 0.6 Ma (2r) and 62.9 ± 0.2 Ma (2r) for the Dongri rhyolite
flow from the upper part of this volcanic sequence, and have also
discovered a sedimentary deposit under this rhyolite. Our results
lead to the following significant inferences:

(i) Post-K–Pg Boundary inter-volcanic sedimentary deposits
formed throughout the length of Mumbai due to periodic,
syn-volcanic faulting and subsidence (e.g., Cripps et al.,
2005).

(ii) The Dongri sedimentary deposit has a lateral subsurface
extension of at least 1 km and is consistent with the volcanic
stratigraphy previously postulated for Mumbai (Sethna,
1999).

(iii) Shale fragments known in the Uttan–Dongri area tuffs
(Sethna and Mousavi, 1994) were sourced from Dongri
sedimentary deposit, which formed no later than 63–62 Ma.

(iv) The total duration of Deccan magmatism, including intrusive
and extrusive manifestations, was at least 8–9 million years
(cf. Sheth et al., 2001a,b).

(v) The Panvel flexure, a major, unquestionably post-volcanic
tectonic structure, formed, or continued to form, after
63 Ma, possibly even 62 Ma, and cannot have formed by
65–64 Ma as concluded in a recent study (Hooper et al.,
2010). This result is of particular interest and significance
in understanding the interplay of volcanism, intrusion, and
tectonic deformation at rifted continental margins.
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