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Abstract 

Early Cretaceous alkaline picrites and high-magnesium basalts from the North China craton provide 
evidence for recycling of continental lithosphere by density foundering. Both the picrites and basalts 
contain xenocrystic olivines with high Fo92-93 and low CaO (<0.10%), consistent with the lavas’ 
derivation from, or interaction with Archean mantle lithosphere.  

Most importantly, both the picritic and basaltic lavas contain unusual, reversely zoned clinopyroxene 
phenocrysts whose cores have low MgO, high Na2O (up to 2.4 wt.%, or 17.3 mol%Jd), and frequently 
contain ilmenite exsolution lamellae, consistent with their crystallization from an eclogite-derived melt 
(tonalite or trondhjemite).  In contrast, the clinopyroxene exteriors have low Na2O (<0.92 wt.%, or <6.5 
mol% Jd) and are lamellae-free, suggesting crystallization from a mantle-derived melt (picrite or 
basalt). Both the cores and exteriors have high Al2O3 contents (up to 6.9 wt.%). These features reflect 
crystallization of the cpx from an aluminous melt at mantle depths, with the cores forming at a 
significantly greater depth (> 2.5 GPa) than the surrounding cpx (> 1.5 GPa). Calculated primary melt 
compositions further constrain the magmas’ formation at 3-4 GPa, in the presence of garnet. The 
unusually low CaO, high Ni/MgO and low 100Mn/Fe of primary melts indicate derivation of both the 
picritic and basaltic lavas from pyroxenite sources containing limited or no olivine. High Sr/Y, LaN/YbN 
and Th/U and low Lu/Hf, together with radiogenic initial 

87
Sr/

86
Sr and 

187
Os/

188
Os ratios and negative 

εNd values implicate contributions from melts derived from foundered eclogitic lower continental crust.  
Modelling suggests that the basalt source region contained a variable proportion (30-40%) of eclogite-
derived component whereas the source of the picrites, on average, likely contained a generally higher 
proportion (60-70%) of a different eclogite-derived component.  

Collectively, these results suggest that both the basaltic and picritic lavas originated by partial melting 
of Archean lithospheric mantle that was variably hybridised by melts derived from foundered lower 
crustal eclogite. Together with previous studies, these findings provide new evidence that thinning of 
the North China craton was caused by the removal of the lower lithosphere (mantle and lower crust). 
Recycling and melting of eclogitic lower crust may contribute more to mantle heterogeneity than has 
previously been recognized. 
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Introduction 

Recycling of eclogite of lower continental crust origins, together with the underlying lithospheric 
mantle, has been proposed to play a role in plume magmatism, crustal evolution and formation of 
chemical heterogeneities within the mantle (Arndt & Goldstein, 1989; Kay & Kay, 1991; Jull & 
Kelemen, 2001; Escrig et al., 2004; Gao et al., 2004; Elkins-Tanton, 2005; Lustrino, 2005; Anderson, 
2006). Eclogites have lower melting temperatures than mantle peridotites (Yaxley & Green, 1998; 
Yaxley, 2000; Rapp et al., 1999; Kogiso et al., 2003; Sobolev et al., 2005, 2007), and as foundered, 
silica-saturated eclogites heat up, they will produce silicic melts (tonalite to trondhjemite) that may 
react extensively with overlying mantle peridotite. Such reaction may produce an olivine-free 
pyroxenite, which, if subsequently melted, will generate basaltic melt (Kogiso et al., 2003; Sobolev et 
al., 2005, 2007; Herzberg, 2006).   

Although recycling of eclogite in subducted oceanic lithosphere is a direct consequence of plate 
tectonics and its consequences for mantle composition have been extensively studied (e.g., Hawaii) 
(Hofmann & White, 1982; Sobolev et al., 2005, 2007; Herzberg, 2006), recycling of eclogite formed in 
deep continental lithosphere is more controversial and only a few studies have considered its effect on 
the composition of mantle derived magmas (McKenzie & O'Nions, 1983; Arndt & Goldstein, 1989; 
Escrig et al., 2004; Elkins-Tanton, 2005; Lustrino, 2005; Anderson, 2006). Here we present 
petrographic and geochemical evidence that Mesozoic basalts and picrites from the North China 
craton derive from mantle that was modified by interaction with melts from foundered eclogite.  

The North China Craton 

The North China craton (NCC; Figure 1) is one of the world’s oldest Archean cratons, preserving 
crustal remnants as old as 3800 Ma (Liu et al., 1992).  The NCC is also one of the world’s most 
unusual cratons, as the eastern block was reactivated in the Mesozoic.  This portion of the craton had 
a cold and thick lithosphere, typical of other Archean cratons, at least through the Ordovician, when 
kimberlites erupted that carried diamonds and refractory garnet peridotites  (Menzies et al., 1993; 
Griffin et al., 1998), the latter of which have Archean Os model ages (Gao et al., 2002; Wu et al., 
2006; Zhang et al., 2008).  

Reactivation of the craton began in the Early Mesozoic, with uplift and the onset of magmatism, 
followed by basin development.  The magmatism peaked volumetrically in the Late Cretaceous (120-
132 Ma; Wu et al., 2005).  This early, compositionally diverse magmatism was followed by Cenozoic 
intraplate basaltic volcanism. Cenozoic basalts in the Eastern Block carry mantle xenoliths that 
equilibrated to a high geotherm (Xu, 2001; Zheng et al., 2006), have a relatively fertile bulk 
composition (Menzies et al., 1993; Griffin et al., 1998; Rudnick et al., 2004) and Os isotopic 
compositions similar to the modern convective mantle  (Gao et al., 2002; Wu et al., 2003, 2006).   

The above observations have been used to suggest that ancient, cratonic mantle lithosphere, similar 
to that present beneath the Kaapvaal, Siberian and other Archean cratons, was removed from the 
base of the Eastern Block of the NCC during the Mesozoic, and was replaced by younger, less 
refractory lithospheric mantle. Whether the replacement was caused by foundering, stretching or 
thermal/chemical erosion of the deep lithosphere due to upwelling asthenosphere is a matter of great 
debate (Xu, 2001; Gao et al., 2004; Wu et al., 2005; Menzies et al., 2007; Zhang et al., 2007; Huang 
et al., 2007). 

Two suites of Early Cretaceous mafic magmas are investigated here: the Sihetun high-Mg basalts 
(124–125 Ma), which erupted in western Liaoning Province, and the Feixian alkaline picrites (119 Ma), 
which erupted in western Shandong Province (Figure 1).   
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Figure 1: Geologic sketch map of the North China craton (shaded on inset). The two suites of Early 
Cretaceous lavas under investigation are shown as large filled crosses. Click here for fuller figure 

caption.  

Evidence for recycling deep cratonic lithosphere and generation of intraplate magmatism 

Both the picrites and basalts contain xenocrystic olivines with high Fo92-93 and low CaO (<0.10%), 
consistent with the lavas’ derivation from, or interaction with, Archean mantle lithosphere (Figure 2). 
Most importantly, both the picritic and basaltic lavas contain unusual, reversely zoned clinopyroxene 
phenocrysts whose cores have low MgO, high Na2O (up to 2.4 wt.%, or 17.3 mol%Jd; Figure 3), and 
frequently contain ilmenite exsolution lamellae, consistent with their crystallization from an eclogite-
derived melt (tonalite or trondhjemite).  In contrast, the clinopyroxene exteriors have low Na2O (<0.92 
wt.%, or <6.5 mol% Jd) (Figure 3) and are lamellae-free, suggesting crystallization from a mantle-
derived melt (picrite or basalt). Both the cores and exteriors have high Al2O3 contents (up to 6.9 wt.%). 
These features reflect crystallization of the cpx from an aluminous melt at mantle depths, with the 
cores forming at a significantly greater depth (> 2.5 GPa) than the surrounding cpx (> 1.5 GPa). 
Calculated primary melt compositions further constrain the magmas’ formation at 3-4 GPa, in the 
presence of garnet (Figure 4a). The unusually low CaO (Figure 4b), high Ni/MgO and low 100Mn/Fe  
(Figure 4c) of primary melts indicate derivation of both the picritic and basaltic lavas from pyroxenite 
sources containing limited or no olivine. High Sr/Y, LaN/YbN and Th/U and low Lu/Hf, together with 
radiogenic initial 

87
Sr/

86
Sr and 

187
Os/

188
Os ratios and negative εNd values implicate contributions from 

melts derived from foundered eclogitic lower continental crust.  Modelling suggests that the basalt 
source region contained a variable proportion (30-40%) of eclogite-derived component whereas the 
source of the picrites, on average, likely contained a generally higher proportion (60-70%) of a 
different eclogite-derived component (Figure 5).  

http://www.mantleplumes.org/WebDocuments/RecycledLithFigCaps.pdf
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Figure 2: Left: Fo (forsterite = 100Mg/(Mg+Fe), where Mg and Fe represent molar proportions) versus 
wt.% CaO plot of olivine cores from Early Cretaceous Feixian alkaline picrites and Sihetun high-Mg 

basalts. Right: Fo histograms show the  systematic compositional differences in olivines from different 
sources. Olivines from the Feixian picrites, with CaO > 0.10%, have Fo < 92, consistent with a 

magmatic origin, whereas those with CaO < 0.10% have Fo >92, consistent with a xenocrystic origin. 
Click here or on Figure for enlargement. Click here for fuller figure caption. 

 

Figure 3: Core-exterior compositions of reversely zoned clinopyroxene phenocrysts from the Feixian 
alkaline picrites. (a) backscattered electron image (BSE) and (b) compositional profile of a euhedral 

clinopyroxene phenocryst along [010] plane from sample SFX19. The dark areas are Mg-rich and the 
light areas are Fe-rich. The main Mg# versus Na2O plot and (c) Mg# histogram compare experimental 
clinopyroxenes in equilibrium with melts derived from eclogite (including garnet pyroxenite), peridotite 

and hybrid eclogite-peridotite. Click here or on Figure for enlargement. Click here for fuller figure 
caption. 

http://www.mantleplumes.org/images3/RecycledLithFig2_1000.gif
http://www.mantleplumes.org/WebDocuments/RecycledLithFigCaps.pdf
http://www.mantleplumes.org/images3/RecycledLithFig3_1000.gif
http://www.mantleplumes.org/WebDocuments/RecycledLithFigCaps.pdf
http://www.mantleplumes.org/images3/RecycledLithFig2_1000.gif
http://www.mantleplumes.org/images3/RecycledLithFig3_1000.gif
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Figure 4: Compositions of primary melts calculated for the Feixian alkaline picrites and Sihetun high-
Mg basalts. (a) Mole% projection from or towards olivine into part of the pyroxene-garnet plane 

compared with cotectics at 3 and 4 GPa (Herzberg, 2006). Thick line labelled “TD” is the thermal 
divide between olivine-rich and SiO2-rich sides of the composition space. (b) MgO versus CaO. Filled 
and open triangles indicate primary melts and solidus melts from peridotites (Herzberg, 2006; Sobolev 

et al., 2007), while filled diamond represents primary melt from pyroxenite (Sobolev et al., 2007). 
Shaded area denotes accumulated fractional melt compositions for a pressure range from 3 to 7 GPa 
(Herzberg, 2006). Filled and open circles with a cross indicate high- and low-SiO2 Hawaiian parental 

magmas (Herzberg, 2006). Arrows display the effects of olivine addition (right pointing) and 
subtraction (left pointing; Herzberg, 2006). (c) Ni/MgO versus 100Mn/Fe ratios of primary melts 

compared to experimentally produced peridotite and pyroxenite-derived end-member melts 
[supplementary Table S2 of Sobolev et al. (2007)]. Click here for fuller figure caption. 

http://www.mantleplumes.org/WebDocuments/RecycledLithFigCaps.pdf
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Figure 5: γOs versus εNd mixing diagram for silicic melt-peridotite mixtures as discussed in the text. 
Starting peridotite compositions are shown as stars.  Solid star reflects ancient NCC peridotite. Open 
star is peridotite with chondritic Os isotopes and the same concentrations and Nd isotopes as ancient 

peridotite.  Starting adakitic melt compositions for the models are beyond the scale of the figure. 
Triangles, squares and circles show increments of 10% mixing of melt into peridotite. Boxes show 
estimated compositions of Sihetun basalt and Feixian picrite sources. Click here for fuller figure 

caption. 

Collectively, these results suggest that both the basaltic and picritic lavas originated by partial melting 
of Archean lithospheric mantle that was variably hybridised by melts derived from foundered lower 
crustal eclogite. Together with previous studies, these findings provide new evidence that thinning of 
the North China craton was caused by the removal of the lower lithosphere (mantle and lower crust). 
They further suggest that recycling and melting of eclogitic lower crust may contribute more to mantle 
heterogeneity than has previously been recognized. 
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