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[1] The intrinsic structure of the isotope data set of samples from the Mid‐Atlantic Ridge and East Pacific
Rise, believed to represent the isotopic composition of their mantle source, reveals a close relationship
between sample spatial distribution and their geochemical features. The spatial distribution of their isotopic
heterogeneity is self‐similar on a scale between 5000 and 6000 km (about 1/6 of Earth’s circumference),
suggesting a self‐organized structure for the underlying mantle. This implies the imprint of chaotic mantle
processes, induced by mantle flow and likely related to an early phase of highly dynamic behavior of the
Earth’s mantle. The size of the identified self‐organized region reflects the large length scale of upper mantle
chemical variability, and it is likely frozen since the Proterozoic. The geochemical heterogeneity of the
asthenosphere along the ridges is believed to record a transition in the thermal conditions of the Earth’s mantle
and to be reflected in the l = 6 peak expansion of several geophysical observables.
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1. Introduction

[2] Thanks to great improvements in analytical
techniques on radioactive and stable isotope sys-
tems, the geochemistry of Mid‐Ocean Ridge Basalts
(MORB) is now greatly detailed. Once believed to
sample a degassed (low 3He, 40Ar), incompatible

element‐poor, shallow and homogeneous mantle
reservoir, MORB are now used to constrain the
length scale of mantle heterogeneity, spanning from
extremely long (e.g., Dupal anomaly) to very short
(e.g., olivine melt inclusion) wavelengths. MORB
are almost perfect for this goal since they tap the
asthenosphere extensively and almost continuously
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and, at ridge crests, they are young and not con-
taminated (e.g., by seawater). To a first approxi-
mation, MORB represent partial melts of shallow
mantle sources that experienced large melting
degrees under geodynamic conditions which are rel-
atively well constrained (e.g., Mid‐Atlantic Ridge).
The availability of large databases (e.g., Lamont
PetDB and GeoROC) and new high‐precision iso-
tope data [e.g., Agranier et al., 2005; Meyzen et al.,
2007] allowed for integration of MORB geochemi-
cal variability with latitude along ridges, the geoid
and/or seismic velocity anomalies [e.g., Klein and
Langmuir, 1987; Cazenave et al., 1992; Butler
et al., 1993; Humler et al., 1993; Wessel et al.,
1994, 1996; Zhang et al., 1994; Lecroart et al.,
1997; Goslin et al., 1998; Graham et al., 2001;
Kellogg et al., 2002; Meibom and Anderson, 2004;
Moore et al., 2004; Agranier et al., 2005; Anderson,
2006]. MORB sampled at mid‐ocean ridges allows
us to infer heterogeneities in the asthenospheric
mantle as the ultimate effect of complex processes
dominated by temperature, pressure and composi-
tion of the shallow mantle. This occurs in a con-
vective regime that involves mass transfer from the
deep mantle, occasionally disturbed by the occur-
rence of hot spots [e.g., Butler et al., 1993; Phipps
Morgan and Morgan, 1999; Hofmann, 1997;
Lecroart et al., 1997;Goslin et al., 1998; Saal et al.,
1998; Graham et al., 2001; Kellogg et al., 2002;
Agranier et al., 2005; Blichert‐Toft et al., 2005;
Debaille et al., 2006]. Alternatively, upper mantle

heterogeneity has been interpreted as the natural
result of basically athermal processes that are
intrinsic to plate tectonics, such as recycling and
delamination of continental crust and subducted
aseismic ridges [Meibom and Anderson, 2004;
Anderson, 2006].

[3] In this paper we analyze the correlations between
the isotopic (Sr, Nd, Hf, Pb) composition of MORB
along both the Mid‐Atlantic Ridge (MAR) and the
East Pacific Rise (EPR) as a function of their posi-
tion along the ridge (Figure 1). We discuss whether
the theory of chaotic dynamical systems applied to
isotopic series along oceanic ridges can delimit the
length scale of upper mantle heterogeneities, and
thus test whether the mantle structure is consistent
with a self similar distribution of such heterogeneity.
We recognize the topological features of the shallow
mantle through the geochemical signature it sends
to the surface by means of ridge basalts. This is
obtained by recognizing the isomorphism (= same
form) existing between a spatial structure and the
geochemical signal it can supply, and that can be
detected by suitable analysis of data sets.

2. Methods

2.1. Self‐Similarity
[4] Self‐similarity is defined by the scale‐invariant
relation: n(L) = L−D, or in logarithmic form ln[n(L)] =
−D · ln(L), in which it is stated that the number n
of objects that composes a set of measurements
depends exponentially on the size L of the “ruler”
(unit of measurements or magnification) used for
the data analysis, where D is a fractional value
related to the Euclidean dimension of the space in
which the measurement is performed. This means
that if we are dealing with measurements on a line,
D is a number between 0 and 1, as well as if we are
dealing with “volume”measurements, D is between
2 and 3. The scale invariance relation states that
the number of objects observed at different scales
depends on the scale itself. In fact, if the ruler
decreases in size from L to (L − DL) (or magnifi-
cation rises), the number of measurements grows
according to

n L��Lð Þ ¼ n Lð Þ L��L

L

� ��D

:

[5] Additional iteration of this procedure gives a
multiplicative cascade that generates an infinite
sequence of measures. This is a kind of regularity
that fixes the aspect of the observed set indepen-

Figure 1. Sample locations (triangular symbols) along
the Mid‐Atlantic Ridge and East Pacific Rise. Isotope
data are from PetDB (http://www.petdb.org/) and GeoROC
(http://georoc.mpch‐mainz.gwdg.de/Start.asp) databases
and from Agranier et al. [2005].
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dently of the magnification of observation. Self‐
similarity is a typical feature of fractal sets.

2.2. Fractals and Fractal Dimension
[6] Eddies, boundary of clouds, and coastlines may
be represented by curves whose common features
are irregularity and nondifferentiability, that is they
exhibit self‐similar fluctuations. Such irregular
fluctuations may be visualized to result from the
superimposition of an ensemble of eddies or sine
waves. Mathematical models for simulation and
prediction of dynamical systems are nonlinear
so that analytical solutions are not available. Finite
precision computed solutions are sensitively depen-
dent on initial conditions and give chaotic solu-
tions, identified as deterministic chaos. A “fractal”
is a set of points whose dimension exceeds its
topological (Euclidean) dimension (DE) or, using
Mandelbrot’s [1982, p. 15] definition, “a rough or
fragmented geometric shape that can be subdivided
in parts, each of which is (at least approximately) a
reduced/size copy of the whole.” We take the ratio
DF = −ln[n(L)]/ln(L) as the definition of “fractal
dimension” of a self‐similar object. In a rough
sense, fractal dimension is a measure of how
“complicated” a self‐similar figure is or, mathe-
matically speaking, DF represents the degree of
self‐similarity. The fractal nature of a time or space
series may be revealed by means of suitable
mathematical techniques. The principle is that a
one‐dimensional time, or space, series can be
expanded into a higher‐dimensional space, in
which the dynamic of the underlying generator may
be disclosed [Strogatz, 1994; Abarbanel, 1996;
Addison, 1997].

2.3. Phase Space
[7] Even if chaotic systems are deterministic,
meaning that their future dynamics are fully deter-
mined by their initial conditions, their evolution is
not predictable. It is important to establish a vector
space (called phase space) which is the space of all
possible states of a physical system, each state
corresponding to one unique point in the phase
space. Then, it is possible to study the dynamics of
the system by studying the dynamics of the corre-
sponding phase space points [Kantz and Schreiber,
2004].

[8] Phase space reconstruction is a technique
developed in analyzing nonlinear dynamic systems.
The basic idea of phase space reconstruction is that
evolution of any variable of a system depends on all
the other interacting variables of the same system.

Therefore, the information of these related variables
is hidden within the evolution of the one that has
been chosen to represent the system. The system
output for a single variable thus reflects the effects of
all the other (unknown) variables on the observable
signal. In order to reconstruct an “equivalent” set of
variables that describes the system, one needs only
to investigate one of the variables by adopting a
stepped or delayed series as a new coordinate for the
phase space. By repeating the process, the “equiv-
alent” phase space can be obtained [Takens, 1981].
The process is called “space delay embedding.” In
summary, the delayed coordinate embedding allows
us to generate a phase space representation of the
dynamical system from a single scalar time or space
series. Thus, given the series of a single observable
variable, it is possible to reconstruct a topologically
equivalent portrait of the behavior of the original
multidimensional set of variables that describe the
system. The purpose of space delay embedding is to
unfold the projection back to a multidimensional
phase space that is representative of the original
system. To expand a one‐dimensional signal into an
m‐dimensional phase space, each observation in the
original signal X(i) has to be substituted with vector:

X ið Þ ¼ x ið Þ; x iþ �ð Þ; x iþ 2�ð Þ; . . . ; x iþ m� 1ð Þ�½ �; ð1Þ

where i is the space (time) index,m is the embedding
dimension and l is a given delay.

2.4. Recurrence Plots
[9] Usually, a phase space does not have a dimension
which allows it to be pictured. Higher‐dimensional
phase spaces can only be visualized by projection into
the two‐ or three‐dimensional subspaces. Eckmann
et al. [1987] introduced a tool which enables us
enables us to investigate the m‐dimensional phase
space through a two‐dimensional representation of
its recurrences (recurrence plot: a statistical plot that
shows a pattern that reoccurs). Even if a chaotic
system would not recur exactly to the initial state, it
approaches the initial state arbitrarily close.

[10] In practice, if a series is represented by n data
one can list them in column A in a spreadsheet:

A ¼ a1; a2; a3; a4; a5; . . . ; an�3; an�2; an�1; an: ð2Þ

[11] The same data may be also distributed in col-
umn to investigate the m‐dimensional phase space
through a two‐dimensional representation of its
recurrences. The recurrence plot allows us to extract
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meaningful information from data on time and space
series and reveals any redundancies inside the data.
The same data may be also distributed in column B,
delaying the series, e.g., for four steps (l = 4, where
l is the delay step as defined in equation (1)):

B ¼ an�3; an�2; an�1; an; a1; . . . ; an�7; an�6; an�5; an�4: ð3Þ

[12] For n natural numbers and l = 4, this arrange-
ment corresponds to the couple of rows ordered as
below:

A ¼ 1 2 3 4 5 6 7 . . . . . . ::n� 3 n� 2 n� 1 n

B ¼ n� 3 n� 2 n� 1 n 1 2 3 . . . . . . :n� 7 n� 6

n� 5 n� 4

[13] The couples on the rows (a1, an−3)…..(an, an−4)
represent a bidimensional projection (m = 2) of the
phase space of the system that generates A (e.g.,
Figure 2). In the same way, the same set of values,
distributed and stepped, in three columns (A, B, C):

A ¼ a1; a2; a3; a4; a5; . . . ; an�3; an�2; an�1; an; ð4Þ

B ¼ an�3; an�2; an�1; an; a1; . . . ; an�7; an�6; an�5; an�4; ð5Þ

C ¼ an�6; an�5; an�4; an�3; an�2; . . . ; an�9; an�8; an�7; an�6;

ð6Þ

generates a set of values on the rows (a1, an−3, an−7)
…(an, an−4, an−8), representing a three‐dimensional
projection (m = 3) of the same phase space.

[14] The goal of this reconstruction is to catch the
states of the original system on the basis of the
output values at the time (or position) of the obser-
vation (=sampling). In this way, each (unknown)
state S(i) is approximated by the vector of delayed
coordinates (equation (1)):

X ið Þ ¼ x ið Þ; x iþ �ð Þ; x iþ 2�ð Þ; . . . ; x iþ m� 1ð Þ�½ �:

Software S1 in the auxiliary material shows some
examples of this procedure.1

[15] At any S(i), a point P (defined by X(i) in the
phase space) moves on describing a trajectory
(called phase space trajectory, or orbit). The evolu-
tion of the trajectory represents the dynamic of the

system. One could expect that the evolution of the
system with time tends to a dynamical stationary
state, the subspace of which is the “attractor” of the
dynamics. The set defined by all the points of
delayed coordinates X is the attractor of the phase
space. The “correlation” dimension (D) of the
attractor [Grassberger and Procaccia, 1983] may be
computed by evaluating the number C(r) of pairs
[X(i), X(j)], whose distance in the phase space is
less than r:

X ið Þ � X jð Þj j � r j 6¼ ið Þ: ð7Þ

If

C rð Þ / rD ð8Þ

exponent D is the correlation dimension of the
attractor and a simple measure of the topological
dimension of the attractor (Figure 3). Noteworthy,
the dynamics is “chaotic” when the attractor is
“strange,” that is it represents an attracting set in
the embedding phase space for which D has a frac-
tional value. Trajectories along a strange attractor
appear to skip around randomly but do not fill the
whole phase space [Strogatz, 1994; Abarbanel,
1996; Addison, 1997]. It is possible to verify if an
attractor is strange in the phase space by determining
the correlation dimension D as a function of the
embedding dimension m. Actually, a graphical
visualization of the trajectory enables the determi-
nation of a state, since its shape gives hints about
the system. Using logarithms, equation (8) can be
written as:

log C rð Þ½ � ¼ D log rð Þ þ q ð9Þ

where D is the slope of the linear regression of
the graph log [(Cr)] versus log (r) and q is the
intercept.

[16] Periodic or chaotic systems have characteristic
phase space portraits. The space series is random and
the attractor cannot be reconstructed when D
increases with increasing m (Figure 3b). Otherwise,
the space series is chaotic and the attractor is strange
when D saturates to some fractal value Dmax as m
increases, above a critical value mc [e.g., Strogatz,
1994; Abarbanel, 1996; Addison, 1997; Poli and
Perugini, 2002] (Figures 3a and 3c).

2.5. Embedding Dimension m and Delay l
[17] In general, if m is larger than twice the number
of active degrees of freedom, regardless of how high
the dimensionality of the reference space is, the
attractor formed by X(i) is equivalent to the original

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GC002798.
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trajectory x(i), that is in the unknown space which
the original system is defined. A natural data set
reveals its structure on a limited number of scales of
observation. Stately differently, if one chooses a too
large or too small ruler for making measurements,
one misses to reveal the structure of the data set.
Roughly speaking, it means that it is impossible to
see waves in the sea if looking at the Earth from the
Moon, neither if you take the point of view of
plankton. Smaller m values satisfying m > Dmax can

be sufficient. By contrast, the choice of a too large
value of m for chaotic data will add redundancy and
thus degrade the performance of many algorithms
[Kantz and Schreiber, 2004].

[18] One neither knows the number of active degrees
of freedom, which is formally necessary to compute
m, nor having any idea of how to choose the delay l,
when starting to analyze a scalar time or space series.
For ideal noise‐free data, there exists a dimension m

Figure 2. (a) Recurrence plots for Nd isotope series (MAR). Data are randomly arranged (irrespective of sampling
location; some values are more recurrent than others and tend to cluster in a portion of the plot) and ordered with respect
to increasing distances from the northernmost sample (inset in Figure 2a). According to Tobler [1970, p. 236],
“Everything is related to everything else, but near things are more related than distant things” (spatial dependency in
mathematical statistics); samples taken close together in general tend to be more similar in composition than samples
taken farther apart. (b) Sample distances along the ridge treated as a space series and arranged with respect to increasing
values of Nd isotope data, suggesting a kind of self organization in the data set with the “typical” value of about 5000 km.
(c) The Lorenz series [Lorenz, 1963] and (d) the white noise. These plots represent a bidimensional projection (m = 2) of
the phase space of the system, according to equation (3), and allow us to reveal the structure of the data set in the
m‐dimensional phase space through a two‐dimensional representation of its recurrences. Note that the space series
of Nd isotopic compositions for the MAR (Figure 2a) and the Lorenz series (Figure 2c) show an attractor in which
data points are more dense (recur) in the top right corner of the chart, not filling up the entire bidimensional space
(anisotropic signal). By contrast, random signals (Figure 2b) are characterized by uniform distribution of data points,
filling up the entire two‐dimensional space. Organization in signals increases with decreasing of the number of
independent variables, thus depending upon the fractal dimension of the set under study (e.g., the Lorenz series shows
neater trajectories due to its lower degrees of freedom than the Nd isotope series). Software S1 in the auxiliary
material shows some examples of this procedure.
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such that the vectors x(i) are equivalent to phase
space vectors. Generally, there are two different
approaches for optimizing the embedding para-
meters m and l: either, one starts with the intended
analysis right away and optimizes the result with
respect tom and l, that is by increasing the values of
m until the typical behavior of deterministic data
appears (e.g., chaos manifests itself); or one exploits
specific statistical tools for their determination and
uses the optimized values for further analysis [Cao,

1997; Kantz and Schreiber, 1997]. We used both
the approaches to determine the correct values of m
and l.

2.6. Determination of m and False Near
Neighbors
[19] The embedding dimension can be assessed by
the smallest number of the uncorrelated directions in
the phase space, that is the minimum number of
delay coordinates needed so that the trajectories x(i)
do not intersect in m dimensions. This can be done
by means of various methods which are based on the
principle that, by decreasing the dimension, an
increasing amount of phase space points will be
projected in the neighborhood of any phase space
point, even if they are not real neighbors. The
method of finding a properm can be described using
geometrical considerations: as m increases, attrac-
tors “unfold” and the vectors that are close in
dimension m move to a significant distance apart in
(m + 1), being “false near neighbors” in dimension
m. In dimensions less than m, trajectories can
intersect because their projected down into too few
dimensions. Subsequent calculations, such as pre-
dictions, may then be corrupted. If it is too large,
noise and other contamination may corrupt other
calculations because noise fills any dimension.

[20] The method of false near neighbors [Kennel
et al., 1992] measures the percentage of false
neighbors as m increases. If we assume that the
dynamics in phase space is represented by a smooth
vector field, then neighboring states should be sub-
ject to almost the same evolution. Hence, after a
short time interval into the future, the two trajecto-
ries emerging from them should be still close
neighbors, even if chaos can introduce an expo-
nential divergence of the two. A certain embedding
dimension is sufficient for a reconstruction of a
phase space thanks to this property. The basic ideas
is to search for points in the data set which are
neighbors in embedding space, but which should not
be neighbors since their future temporal evolution is
too different. Imagine that the correct m for some
data set is m0. Now study the same data in a lower‐
dimensionalm <m0. The transition fromm tom0 is a
projection, eliminating certain axes from the coordi-
nate system. Hence, points whose coordinates which
are eliminated by the projection differ strongly, can
become false neighbors in the m‐dimensional
space. For each point of the series, take its closest
neighbor in m dimensions, and compute the ratio of
the distances between these two points in m + 1
dimension and in m dimension. If this ratio is larger

Figure 3. Log [C(r)] versus log (r) plots for (a) the
Lorenz series (Dmax = 2.06 and l = 1), (b) a random
(randomly generated) series (Dmax = 1), and (c) Nd iso-
tope series (MAR; Dmax = 5.1 and l = 1). D is the slope
of the linear regression of the graph log [(Cr)] versus
Log (r), according to equation (11).
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than a given threshold, the neighbor was false. This
threshold has to be large enough to allow for ex-
ponential divergence due to deterministic chaos
[Kantz and Schreiber, 2004]. This situation has
been discussed by Armienti and Gasperini [2007]
for mantle isotopic composition and corresponds
to the trivial observation that if two rock analyses
have similar amounts of two elements A and B and,
in a plot of A versus B they fall practically in the
same position, nonetheless they may be completely
different. Thus the dependence of the amount of
these false nearest neighbors from m can be used to
derive estimates of the embedding dimension in
order to find the minimal one that is able to arrange
all the points in distinct positions in the phase space
[Kantz and Schreiber, 1997].

2.7. Determination of l
[21] Analytical methods for estimating the delay l
are the autocorrelation and power spectrum func-
tions, the average mutual information function
(MIF), the degree of separation function, and the
Lyapunov exponents [e.g., Fraser and Swinney,
1986]. The delay l must be a large enough that in-
dependent information about the system is in each
component of the vector. However, lmust not be so
large that the components of the vectors x(i) are
independent with respect to each other. Conversely,
if the delay is too short, the vector components will
be independent enough and will not contain any new
information, then successive elements of the delay
vectors are strongly correlated. We stress that l has
to be related to the average distance of the data point
in the study series. In fact, stepping the sampling by
l implies to choose a value for spacing the samples
of a mean value l · F, where F is the ratio between
the temporal, or spatial extent, of the data series and
the number of samples.

[22] A possible rule for good delay l is to use the
first minimum of the Average Mutual Information
[Fraser and Swinney, 1986].MIF is a measure of the
dependence between two variables and determines
how much information the measurements x(i) at
some time or space position have relative to
measurements and some other time or space posi-
tion x (i + l). If the two variables are independent,
the mutual information between them is zero. If the
two are strongly dependent, e.g., one is a function
of another, the mutual information between them is
large. There are other interpretations of the mutual
information, for example, the stored information in
one variable about another variable, and the degree
of the predictability of the second variable by

knowing the first. The delay l should be chosen
such that the elements in embedding vectors are no
longer correlated, thus subsequent analysis would
reveal spatial or geometrical structures. The opti-
mal delay corresponds to the first minimum in the
MIF and allows chaos to manifest itself [e.g.,
Belaire‐Franch and Contreras, 2002; Cellucci
et al., 2005].

[23] The method used to reconstruct the attractor
[Takens, 1981] and the algorithm employed to
measure its topological dimension [Grassberger
and Procaccia, 1983] would require data points to
be evenly spaced. However, a constant sampling rate
is not always possible in nature, and measurements
result in discrete time (space) series which often lead
to problems in applying standard methods of data
analysis. Conversely, nonlinear data analysis allows
an appropriate reconstruction of the underlying
dynamics, since each single component of a system
contains essential information about the dynamics of
the whole system. We performed a numerical
experiment on the Lorenz series (3500 data points;
Dmax = 2.06), by randomly extracting 3000, 2500,
2000,…., 500 data points that were treated as dif-
ferent time subseries, in order to evaluate enduring
of the fractal dimension of the original series despite
irregular sampling. For subseries made of number of
points �1000 (thus about one third of the original
samples of the Lorenz series), scale invariance is
observed, withDmax ranging from 2.16 to 2.45, even
if the signal has degraded by the increase of the
average distance among the points. For time subse-
ries made of number of points <1000, self‐similarity
cannot be proved, since the average distance of the
elements in the series is too large to ensure the
preservation of any relations between two subse-
quent points. In other words, a source may reveal its
features provided that the average distance of the
data points is small enough. Apparently, the error in
evaluating the fractal dimension of a randomly
sampled chaotic structure results in an overesti-
mation of its correlation dimension D. A similar
approach has been adopted by Malinowski [2004]
leading to similar conclusions.

2.8. Application to Ocean Ridge Basalts
[24] We selected 1476 fresh basaltic samples from the
Mid‐Atlantic Ridge (from 78°N to 55°S (Figure 1))
and 519 from the East Pacific Rise (from 27°N to
56°S (Figure 1)), from the PetDB (http://www.
petdb.org/) and GeoROC (http://georoc.mpch‐
mainz.gwdg.de/Start.asp) databases, and new high‐
quality data fromAgranier et al. [2005]. By contrast,
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database on the Indian Ridge consists of a number
of analyses (about 250 (http://georoc.mpch‐mainz.
gwdg.de/Start.asp and Meyzen et al. [2007]) which
is too small and patchy to be taken into account.
We processed the raw available database by
choosing only one isotopic datum for each coor-
dinate and avoiding data on transform faults along
the ridge. This choice is justified by the evidence
that the difference in composition among samples
from the same site is less than the variability of the
nearest neighbors. Gaps in sampling exist for both
the MAR and EPR, and in our modeling we took
into account evidence that the database for the EPR
is significantly more patchy (Figure 1). We param-
eterized the isotopic (Sr, Nd, Pb and Hf) hetero-
geneities of the asthenospheric mantle along the
MAR and EPR as a function of their position along
the ridge. We calculated the shortest distance
between each two adjacent samples, then we
assigned a position to each sample as the sum of
the “orthodromic distances,” starting from the
northernmost sample (maximum latitude). The
“orthodromic distance,” or “great‐circle distance,”
is the shortest distance between any two points on
the surface of a sphere measured along a path on
the surface of the sphere. Then, we determined
whether the observed heterogeneity along each
oceanic ridge could be described by a numerical
model that is based on the theory of chaotic
dynamical systems.We are aware that extracted data
points are not evenly spaced along the orthodromic
ridges, but the intrinsic structure of the geochemical
heterogeneity of the upper mantle in these regions
should manifest itself independently of the way of
sampling, as discussed above for the Lorenz series.

[25] To recognize and characterize the dimension of
the attractor related to isotope variability of the
asthenosphere along the mid‐ocean ridges, we
assumed each sequence of isotopic compositions ri
and relative distance xi from the northernmost
sample as two different space series.

[26] We studied the structure of the data set, as
sorted by distance (km) along the ocean ridges, by
representing its phase space, and evaluating the
fractal dimension of the correlation function that is
obtained by counting the number of pairs of data
whose Euclidean (Ed) distance in the phase space of
dimension m is less than a given value r:

Ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm¼M

m¼0

x iþ m�ð Þ � x iþ k þ m�ð Þð Þ2
vuut < r ð10Þ

where i is the position, k a difference of positions

between two points of the series, and l is the delay as
defined above, chosen as l = 1 by computing the
MIF. Let Cm the number of pairs which obeys
equation (10).

[27] For m = 1 we take in consideration the space
series itself, thus we have no need of delay and the
Euclidean distance between two points is simply the
difference in composition between two terms of the
series, spaced of k:

x ið Þ � x iþ kð Þj j < r: ð11Þ

A deeper insight of the data set is obtained by
evaluating how many couples (X), within each dif-
ferent embedding dimension m, are found within a
given segment of the ridge of a given length L. The
rationale of this choice is a further theoretical
development of nonlinear analysis. Consider two
distances Lm =ml and Lm+1 = (m + 1)l along a ridge.
Let Cm be the number of couples of measurements
being spaced less than Lm and differing less than r,
and C(m+1) the points at a distance less than Lm+1 =
(m + 1)il and differing less than r. If there is a
relation of scale invariance between Cm and r (Cm =
K rD), it ensures that, varyingm, the ratioCm/Cm+1 is
provided by:

C mð Þ
C mþ1ð Þ

¼ KmrD

Kmþ1rD
¼ K: ð12Þ

K is <1 when the number of pairs increases with the
length of the segment in which we perform mea-
surements, and K = 1 when L � Lmax, since the
number of pairs necessarily stops increasing,
when L is large enough to include all possible
couples in the data set. In other words, Cm+1 is
larger than Cm only if L is smaller than a value
(Lmax) behind which Cm+1 = Cm, since all the points
of the data set fulfill the condition to be at a dis-
tance <Lmax. Thus the meaning of Lmax turns out
promptly to be the maximum distance along the
data series that still reveals the scale invariance
relations.

[28] Plotting log [C(r)] (C(r): the number of pairs of
data whose Euclidean (Ed) distance in the phase
space of dimension m is less than a given value r)
versus log (r) (r: given value of compositional dif-
ference) in a bidimensional chart, the series is cha-
otic if the correlation dimension D, which is the
slope of the curve for each m, saturates to Dmax for a
particular value mc, that is (Figures 4a and 4c–4e)

Dmax ¼ constant; if m � mc: ð13Þ
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Figure 4. Plot of log [C(r)] versus log (r) for increasing values of the embedding dimension m (m = 1, 2, 3…, 10) for
different space series along the MAR: (a) Nd isotopes, (b) Sr isotopes, (c) 206Pb/204Pb ratios, (d) Hf isotopes, (e) mul-
tidimensional isotope vector (l = 1000), and (f) the white noise (l = 1), here treated as a space series. Note that the
attractor cannot be reconstructed when D increases with increasing m (Dmax = 1) such as for the Sr isotopes
series and for the white noise (see section 2 for details). Software S2 in the auxiliary material contains the software
adopted to apply the procedure to Nd data and provide plots and estimates of D.
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Software S2 in the auxiliary material contains the
software adopted to apply the procedure to Nd data
and provide plots and estimates of D.

3. Results

[29] Once the space series for each isotope system
and their relative cumulative distances are extracted,
the existence of attractors in the system and whether
their dimension is fractal can be evaluated by
correlating log [C(r)] versus log (r) in a bidimen-
sional chart. By examining the behavior of D as m
increases for both the MAR and EPR, we find the
existence of chaotic behavior in most series (Table 1
and Figure 3). As a control we report the results of
the numerical analysis we performed on the Lorenz
series (Figure 3a) for which we obtain the value
of Dmax reported in the literature (Dmax = 2.06
[Abarbanel, 1996]).

[30] For each isotope system, the space series of both
the MAR and EPR are characterized by peculiar
Dmax values, ranging from 4.1 to 6.0 (Table 1). This
variability might imply a peculiar sensitivity of the
different isotopic systems in regard to processes
responsible for the asthenosphere heterogeneity
along the two mid‐ocean ridges, since Dmax corre-
sponds to the number of degrees of freedom of the
system under study.

[31] We adopted a further constraint to explore the
structure of the data set by checking how a given
distance L (= l · m) along the ridge influences the
estimate ofmc andDmax. For differentmcwe verified

that the calculated values of the fractal dimension
(here defined as D) is the same for each value of L
along the ridge. Our value of l, assessed at 1000 km
by MIF, also corresponds to the ratio between the
length of the orthodromic ridge and the number of
points, scaled to a factor of 100 to avoid time con-
suming computation. We find that, for all the
embedding dimensions, D reaches a maximum
value (Dmax) for L � 5000–6000, depending upon
the isotopic system under investigation (Figure 5).
We interpret this result as revealing that the distri-
bution of the asthenosphere heterogeneity along
both theMAR and EPR is self‐similar in the range of
5000–6000 km (Figures 4a–4d). Such a size for a
mantle region is comparable for most of the isotope
series, despite the different values ofDmax (Figure 5).

[32] This result is supported by analysis of the large‐
scale structure (typology) and small‐scale structure
(texture) of the recurrence plots [Eckmann et al.,
1987; Iwanski and Bradley, 1998; Choi et al.,
1999], in which higher‐dimensional phase spaces
can be visualized by projection into the two (e.g.,
143Nd/144Nd (Figure 2a)) or three‐dimensional
subspaces, for each isotope series. Actually, global
impression from the typology is characterized by
drift (trend) of points, likely caused by slowly
varying parameters. If the data set is randomly
arranged, the recurrence plots of isotope series show
poorly populated top left and bottom right corners,
induced by the scarcity of the association of couples
of values typical of that region (e.g., Figure 2a). In
this particular case, texture reveals vertical and
horizontal lines, marking a space (isotope) length in

Table 1. Characteristic Length Scales and Embedding Dimensions m of the Isotopic Variability of the Asthenosphere Along the
MAR and EPR and Dmax Values for Each Isotope Systematic and the Isotope Compositions as a Wholea

Isotope Ratios

Mid‐Atlantic Ridge Pacific Ocean

m Dmax l L (km) l Dmax m Dmax l L (km) l Dmax

87Sr/86Sr 9 4.8 1 n.d. 1000 n.d. 9 4.5 1 6000 1000 0.48
143Nd/144Nd 8 5.1 1 5000 1000 0.41 8 4.9 1 6000 1000 0.36
143Nd/144Nd (N) 8 4.6 1 5000 1000 0.35 n.c. n.c. 1 n.c. 1000 n.c.
143Nd/144Nd (S) 8 3.5 1 5000 1000 0.28 n.c. n.c. 1 n.c. 1000 n.c.
206Pb/204Pb 7 4.1 1 6000 1000 0.21 7 4.2 1 6000 1000 0.39
206Pb/204Pb (N) 7 4.0 1 5000 1000 0.32 n.c. n.c. 1 n.c. 1000 n.c.
206Pb/204Pb (S) 7 3.8 1 5000 1000 0.30 n.c. n.c. 1 n.c. 1000 n.c.
207Pb/204Pb 7 6.0 1 6000 1000 0.18 n.c. n.c. 1 7000 1000 0.25
208Pb/204Pb 7 4.2 1 5000 1000 0.20 n.c. n.c. 1 7000 1000 0.32
176Hf/177Hf n.c. n.c. 1 5000 1000 0.23 n.c. n.c. 1 n.c. 1000 n.c.
S(Sr, Pb, Nd, Hf) n.c. n.c. 1 5000 1000 0.60 n.c. n.c. 1 5000 (no Hf) 1000 0.98

aIsotopes are Sr, Nd, Hf, Pb; see section 3 for details. Note that slightly higher length scales for the EPR might be due to more patchy database than
for the MAR, nevertheless showing the same embedding dimension for the multidimensional vector. Abbreviations are as follows: n.c., not computed
for scarce database; n.d., not determined, e.g., random (nonchaotic) distribution.We adopted a further constraint to explore the structure of the data set,
by checking how a given distance along the ridge influences the estimate of mc and Dmax. By correlating log[C(r)] versus log(r) in bidimensional
charts, Lmax is the index referring to the characteristic distance (km) along the ridge for which the slopeD reaches a maximum value ofDLmax. L = l·m;
errors on Dmax and Dmax are on the first and the second decimal digit, respectively.
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which a state does not change or changes slowly, as
if the corresponding region behaves coherently for
some lapse of time (e.g., coherent mixing regions of
Perugini and Poli [2000]). This is a typical behavior
of laminar states [Eckmann et al., 1987]. The
occurrence of periodic patterns implies the occur-
rence of cycles in the underlying process: the distance
between periodic patterns corresponds to the typical
temporal or spatial step. A qualitative estimation of
this period from Figure 2a is of about 0.0006 for the
143Nd/144Nd ratio in the MAR. Conversely, if the
isotope series is ordered with respect to increasing
distance from the northernmost sample along the
ridges, in order to evaluate spatial relationships in
the isotope geochemistry of the asthenosphere, the
texture of the recurrence plots of isotope series
reveal the presence of diagonal lines, which in-
dicates that different trajectories visit the same
region of the phase space at different times (inset in
Figure 2a). Also this feature has been correlated to
the development of chaotic behavior [Eckmann
et al., 1987]. Finally, the evidence that ordering
with respect to the values of Nd isotopes produces a
regular pattern in the distance recurrence plot sug-
gests a kind of self organization in the data set with
the “typical” value of abut 5000 km (Figure 2b).

[33] Distributions of both Nd and Pb isotope ratios
of samples located along the MAR above (positive
latitude) or below (negative latitude) the equator
show slightly different Dmax. Asthenosphere het-

erogeneity along the MAR in the southern hemi-
sphere seems to reflect chaotic dynamics governed
by a lower number of degrees of freedom with
respect to the northern hemisphere (Table 1).

[34] We also defined the position of each sample in a
six‐dimensional space as a function of its Sr, Nd, Hf
and Pb isotope compositions, generating a space
series in which the elements are the Euclidean dis-
tance of each point from the others in the multidi-
mensional space of isotope compositions. This
allows us to avoid problems deriving from the
occurrence of false nearest neighbors in the recon-
struction of time series [e.g., Kennel et al., 1992].
Also the distributions of such series show fractal
features on the length scale of 5000 km for both the
MAR and EPR (Figure 4e).

[35] In spite of the richness of isotopic data on MAR
samples, which allows detailed analysis of the or-
ganization of isotopic composition of its underlying
mantle, there are too few immobile trace element
data to independently constrain the model from el-
emental point of view. However, we applied our
analysis to data series provided by 207Pb*/206Pb*
and 208Pb*/206Pb* [the ratio of the radiogenic
additions to the initial terrestrial lead, defined as
[(208Pb/204Pb) − (208Pb/204Pb)init]/[(

206Pb/204Pb) −
(206Pb/204Pb)init] [Hofmann, 1997] that both repre-
sent a proxy of time integrated Th/U ratio, inde-
pendently of elemental Pb. Results obtained from
this analysis are similar to those for the other iso-

Figure 5. Variation of the fractal dimension of the attractor (D) versus the embedding dimension (m) for the space
series extracted from the isotope compositions of the MAR. The attractor cannot be reconstructed when DL increases
with increasing m (Dmax = 1) as for 87Sr/86Sr ratios. Conversely, DL saturates to Dmax for the space series extracted
from the Nd and Pb (and Hf, not shown) isotope compositions.
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topic systematics. Since Th and U are immobile
elements with respect to mantle mineralogy, we
argue that the complexity that this approach reveals
is likely related to the physical arrangement of
mantle structure.

4. Discussion

[36] Fractals and scale‐invariant structures are
produced when, repeatedly, the output of a process
represents the input for the following stage of the
same process. The existence of strange attractors in
the distribution of the isotopic composition of the
asthenosphere sampled at ridge crests reveals the
recurrence (or, more specifically termed, “recur-
sion”) of the same mantle process(es), endured over
long periods of time. The spatial structure of the
data set of the isotopic compositions of the ridge
basalts is “self‐similar” in the compositional
interval defined by the embedding dimension m.
Such interval is associated with a scale‐invariant
region reflecting maximum heterogeneity of the
entire system. This implies that the length scale of
5000–6000 km in which self similarity develops, is
the size in which all geochemical variability of the
mantle source is wholly reflected, and beyond
which one cannot find further peculiarities not yet
observed. Such a typical dimension and composi-
tional interval are not confined to a single ridge
system nor to specific positions along the ridges:
this strongly suggests the occurrence of some
process characterizing the Earth’s mantle on a
planetary scale.

[37] In their pioneer paper, in spite of the limited
number of data, Zindler and Hart [1986] proposed
that maximum heterogeneity (amplitude ratio) of Sr,
Nd and Pb isotope compositions for various volca-
noes, ocean islands and ridge segments results at the
length scale of 1000–10000 km.

[38] Actually, even isotopic compositions of the
MAR and EPR are not homogeneous along the
ridges and typical NMORB values are not wide-
spread. Isotope patterns for both the ridges are
characterized by spikes in 87Sr/86Sr and 206Pb/204Pb
ratios and troughs in Nd and Hf isotope values at
various locations, some of which apparently relate to
plume‐ridge interactions (e.g., Iceland, Azores,
Easter, Galapagos). This rough evaluation of isotope
heterogeneity in mid‐ocean ridges leads one to
assign a crucial role to deep mantle upwelling
related to hot spots. Hot spots would be able to
dramatically modify the geochemistry of mantle
asthenosphere, at least at long wavelengths, thus

somehow delimiting distinct convective domains.
This tenet has been adopted in recent studies on
isotope geochemistry [Agranier et al., 2005;
Blichert‐Toft et al., 2005; Meyzen et al., 2007] and
profiles of gravity and topography [e.g., Goslin
et al., 1998], showing very long wavelengths var-
iation (∼1000 and ∼5000 km) along ridge crests.

[39] Conversely, Lecroart et al. [1997], working on
major element composition of the MAR, showed
that the contribution of plume melts does not cor-
relate with the geoid, assessing that the role of hot
spot material is marginal in contaminating ridge
basalt geochemistry. Anderson [1998, 2006] reached
similar conclusions from different arguments, sug-
gesting that the length scale of mantle heteroge-
neity is not necessarily related to thermal and
chemical pollution induced by hot spots. With
the SUMA model, Meibom and Anderson [2004]
assessed that the upper mantle, is a “marble cake”
structure caused by recycling and other plate tec-
tonic processes but not related to deep mantle
plumes or stirring of the upper mantle by convec-
tion [Allègre and Turcotte, 1986]. Convection
would be passive and strongly controlled by sur-
face conditions (upper mantle) and the history of
subduction [Anderson, 1998].

4.1. Length Scale of 5000–6000 km
[40] The dimension of order 5000–6000 km is
recurrent in geodynamics, topography and tomog-
raphy literature and relates to surface waves which
exhibit a peak in their amplitude at wavelengths
corresponding to l = 5 or 6 [Nakanishi and Anderson,
1984a, 1984b]. As exhaustively discussed by
Anderson [1998], at l = 6 residual topography cor-
relates with seismic velocities between 200 and
500 km depth [Cazenave and Thoraval, 1994] and to
the spectral peak at spherical harmonic degree 6 of
hot spots [Kedar et al., 1993].

[41] Because long‐wavelength geoid anomalies in
isostatically compensated regions can be directly
related to the local dipole moment of the density‐
depth distribution, continental topography are pro-
portional to the elevation multiplied by the mean
depth of compensation. Thus, for a particular ele-
vation, the greater the average depth of the isostatic
“root,” the larger the geoid anomaly. Thick cratons
have an l = 6 expansion that correlates with other
geophysical observables and is almost exactly the
same as the anti–hot spot pattern [Kedar et al.,
1993]. Even if lower mantle density variations
might be responsible for the long‐wavelength geoid,
the dimension of 5000–6000 km could be an iso-
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statically compensated near‐surface effect of the
distribution of continental cratonic roots (depth
∼200 km [Polet and Anderson, 1995]; up to
∼350 km [Artemieva and Mooney, 2002]) into the
upper mantle [Wen and Anderson, 1997; Anderson,
1998]. It has been proposed that the spacing and
location of thick Precambrian cratons may control
the pattern of convection (l = 6) and heat loss in the
upper mantle, thus ruling the location of upwellings
[e.g., Chapman and Pollack, 1974; Anderson, 1998].
Actually, l = 6 spherical harmonic also represents a
peak in upper mantle convective power in numerical
simulations [e.g., Tackley et al., 1994].

[42] Finally, a value of about 6–8·106 km2 is also
considered a critical dimension for the fate of cra-
tons: since larger cratons have thicker (>300 km)
keels, they would skip the effect of heat accumula-
tion at depth. Conversely, smaller cratons would be
less efficient in diverting the heat, hence more sub-
ject to erosion by mantle convection until an equi-
librium lithospheric thickness of about 220 km is
reached [Artemieva and Mooney, 2002]. Conse-
quently, the reworking of Archean crust could have
lead to the coexistence and evolution of two dif-
ferent main craton sizes, characterized by both
peculiar average length (lower or higher than 6000–
8000 km), and keel thickness (∼220 km and
>300 km, respectively).

[43] The dimension of 5000–6000 km we identified
as a recurrent size for self‐similar structures char-
acterizing both the MAR and EPR is also indeed a
significant dimension of the spectral peak at spher-
ical harmonic degree 6 of hot spots, cratons and
several other geophysical observables. These fea-
tures do refer to the present distribution of litho-
spheric and asthenospheric elements and their
geodynamics, but they could be inherited by the past
history of our planet.

[44] In summary, l = 6 peak (6000 km corresponds to
about 1/6 of the Earth circumference) seems to
represent a characteristic length scale for the whole
Earth: how it could be related to the length scale
compositional self‐similarity of ridge axes is
intriguing.

4.2. Viable Mechanisms Inducing
Compositional Scale Invariance
[45] The typical pace of about 6000 km of all quoted
geophysical observables has a profound difference
with respect to the length scale of compositional
invariance we document for the asthenosphere
sampled at ridge crests. In fact, while l = 6 implies

some kind of physical discontinuity in present‐day
spatial distribution of the geophysical observables,
the length scale of maximum variability of mantle
isotopic composition is continuous in space (and
time?), being independent of where a segment of
6000 km is placed along the ridge. This implies that
the mechanism at the base of compositional scale
invariance is intrinsic to the dynamics of the whole
asthenosphere.

[46] At the state of the art, the mechanism which can
play such a long‐lasting and pervasive role in
asthenosphere evolution is represented by the cyclic
route of “partial melting, melt extraction and
recycling” [Meibom and Anderson, 2004; Rudge
et al., 2005], in a “bottom to top,” or “top to bot-
tom,” thermal or athermal driven mantle convection,
which stretches and refolds lithospheric plates over
geological time [Agranier et al., 2005]. In this view,
it is possible that 5000–6000 km may represent the
largest length scale of mantle heterogeneity and
could be related to the common size of the mantle
regions which have been affected by the above
mentioned cyclic route, favored by the mantle flow
related to mantle stirring (athermal plate tectonics or
thermal mantle convection). Such a route is a viable
mechanism that could be able to induce scale
invariance on a planetary scale, irrespective of the
range of latitude of the ridge segments taken into
account (Table 1). The dimension of the chaotic
region could reflect the length scale of mantle
chemical and fertility variations, that is related to the
size of continental and oceanic plates. Migrating
trenches and continents, and amantle that is sampled
by migrating ridges and thin spots, even in sluggish
convective regime [Korenaga, 2006], can result in
statistical compositional heterogeneity [Anderson,
2006]. Nevertheless, local mantle features appear
to influence the chaotic structure of the upper man-
tle, perturbing its complexity but not its size. Actu-
ally, the southern hemisphere along the MAR, while
showing self‐similarity within the same size of
5000–6000 km as the northern one, is characterized
by slightly lower Dmax values, likely reflecting
lower mantle anomaly, e.g., the Dupal anomaly.
According to Agranier et al. [2005], this evidence
could be interpreted as the effect of the northward
convective dispersal (“reeling off”) of the southern
hemisphere anomalous mantle (Type B spectra in
Agranier et al.’s [2005] periodograms).

[47] Nevertheless, it is fundamental that this
behavior had been characterizing mantle dynamics
for a significant number of cycles over the history of
the Earth’s upper mantle, before the asthenosphere
acquired a chaotic structure. This condition requires
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a large span of time and/or highly dynamic regimes,
not observed in Phanerozoic plate tectonics. Phan-
erozoic crust is characterized by a large size range of
continental and oceanic plates, and fast and slow
spreading ridges coexist, as depicted by the present‐
day l = 6 peak. Moreover, given the present rate of
lithosphere subduction, the maximum number of
times that oceanic and continental plates might have
been recycled in the mantle since the beginning of
plate tectonics (about 2.7–3.1 Ga ago [Condie and
Pease, 2008]; 1.8–2.0 Ga [Stern, 2007, 2008]) is
relatively small (no more than 17, for average
180Ma old oceanic floor [e.g.,Catalano et al., 2001])
and unlikely enough to induce scale invariance
organization. Achievement of a chaotic structure
needs a higher number of recursions of events in the
same time span, rather suggesting highly dynamic
behavior of the mantle, which would imply vigorous
mantle convection, e.g., plume‐like dynamics (high
Rayleigh number: Ra � 1.9 × 105).

4.3. From Fast to Sluggish Convection
[48] Thermal convection at infinite Prandtl number
may relate low‐order chaotic to high‐order turbulent
systems. At infinite Prandtl and high Rayleigh
numbers (Ra� 1.9 × 105), high‐order truncations of
the Saltzman equations [Saltzman, 1962]) yields
chaotic solutions, suggesting that mantle convection
may be a chaotic process, also in a regime of laminar
fluxes [Schubert et al., 2001; Antonsen and Ott,
1991]. The horizontal size of the convective cells
are thought to be proportional to the size of the
lithospheric plates [Monnereau and Quéré, 2001].
In this view, an asthenospheric region with a typical
size of 5000–6000 km could be related to relatively
large‐size convective cells (on the order of thousands
km). This condition is generally associated with
weak (sluggish) mantle convection, a dynamical
regime likely possible only after the Archean‐
Proterozoic boundary. During the Archean, mantle
convection is commonly thought to have been more
rapid and shallow (Ra � 107; “hard turbulence”
[Hansen et al., 1990, 1992; van Thienen et al.,
2004]), resulting in small convective cells and al-
lowing only small, thin lithospheric plates, called
microplates or microcontinents (on the order of
hundreds km [e.g., King, 2005]). By the beginning
of the Proterozoic, convection intensity decreased,
since the mantle, ostensibly, underwent thermal
changes that established much larger convection
cells. This drove the formation of larger continental
plates, as with the modern plate tectonics [e.g.,
Breuer and Spohn, 1995; Peltonen et al., 2003;
Condie and Pease, 2008].

[49] Plate size has increased through time, reflecting
a peculiar organization of the convective regime
which, we argue, is also recorded in the chaotic
signature and typical size of mantle heterogeneities
along the ridges. If the relationship “plate size – cell
size – age” is correct, the typical length of the self‐
organized region along the ridges pin points a spe-
cific lapse of time in the Earth’s history. The same
size of the chaotic regions, characterizing wide
mantle portions within the asthenosphere, would
suggest a specific period in which 5000–6000 km
was the general (widespread) magnitude of average
plates. This may imply a surface arrangement
characterized by tessellation of equidimensional
plates [e.g., Anderson, 2002]. The common indicators
of plate tectonics are weak before the Proterozoic,
when high‐temperature conditions allowed rapid
subduction of young, hot slabs that could have
melted before undergoing complete dehydration
[Abbott et al., 1994; Taylor and McLennan, 1995].
Different length scales of geochemical heterogeneity
call for an upper mantle that had already underwent
significant modification processes at the time of the
onset of the recorded chaotic behavior (e.g., re-
cycling of old, altered oceanic crust and mantle
wedge metasomatism). This picture reflects a mod-
ern island arc regime more than a high‐temperature/
low‐pressure subduction system as in the Archean.
The size (∼5000–6000 km) of the chaotic regions in
the asthenosphere along the ridges would thus
record a fundamental transition in the thermal
conditions of the Earth’s mantle, marking the shift
toward a “sluggish convective” regime, which
would have permitted the preservation of an early
self organization of the upper mantle.

[50] In this view, geophysical features resulting in
spherical harmonic wavelengths of l = 6 could be a
remnant consequence, rather than the cause, of the
observed mantle geochemical self organization on
the length scale of 5000–6000 km.

5. Conclusions

[51] We propose a new method that allows us to
detect the chaotic structure induced by convection
and recorded by self organization of isotopic com-
positions along two of the main ridge axes (MAR
and EPR). This relationship enables to identify the
size (5000–6000 km) of mantle regions that lie
beneath the ridges and show the entire compositional
range of upper mantle isotopic variability. These
regions should be considered as fossil remnants of
mantle self organized structures related to an earlier
convective regime. Our approach demonstrate the
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occurrence of scale‐invariant compositional hetero-
geneity in the asthenosphere mantle on the scale of
5000–6000 km, arguing that this is a result of con-
vection mechanism.

[52] Actually, scale invariance calls for recursive
processes, more easily acquired in high‐dynamic
convective regimes. At present, far away from
plumes, mantle dynamics is in the regime of slug-
gish, possibly laminar flux but, in the past, thermal
conditions could have allowed an extensive, more
dynamic convective system [Yuen et al., 1993]. The
chaotic imprint in geochemical heterogeneity along
the MAR and EPR mimics a marble cake mantle in
which geochemical markers, reflecting processes of
recycling, mixing, partial melting andmetasomatism,
coexist on decreasing length scale as indicators of
mature plate tectonics [e.g., Meibom and Anderson,
2004; Agranier et al., 2005]. The adopted method
reveals the structure of the mantle, as it is sampled
by MORB (= the structure of sampling), whatever is
the compositional range of measurements. It means
that we do not need to provide the entire range of
isotope composition of MORB at MAR and EPR to
prove that the arrangement of available data is
chaotic. This implies that even if some composition
of the MORB’s zoo is missed by sampling, the
structure of the sampled area is still well evident.
Actually, according to our approach, it is possible
that within the length scale of 5000–6000 there are
MORB compositions not yet documented in the
world wide repertory of MORB databases.

[53] We assess that the present‐day distribution of
chaotic mantle heterogeneity is frozen since the
Proterozoic. The present‐day sluggish convection
regime still reveals its inherited structure on account
of insufficient number of cycles completed since the
convection regime has changed.

[54] In this view, we consider the length scale of
5000–6000 km as the maximum size of self orga-
nization in the upper mantle at the debut of the
Proterozoic that still controls the large‐scale spatial
distribution of lithospheric features, e.g., cratons,
hot spots, and geoid undulations of order 6.

[55] A further step requires the assessment of the
vertical distribution of mantle heterogeneity, a task
that we started to accomplish both thorough evalu-
ation of spatial‐temporal distribution of ocean floor
tholeiite isotopic composition, and the study of
volcanoes which have erupted lava series, sampling
a suitable interval of mantle depths. This will lead to
depict, at a given time, the position of mantle com-
positional domains in vertical regions.
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