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SUMMARY
We use body wave ray theory in conjunction with the Born approximation to
compute 3-D Frëchet kernels for ¢nite-frequency seismic traveltimes, measured by
cross-correlation of a broad-band waveform with a spherical earth synthetic seismo-
gram. Destructive interference among adjacent frequencies in the broad-band pulse
renders a cross-correlation traveltime measurement sensitive only to the wave speed in
a hollow banana-shaped region surrounding the unperturbed geometrical ray. The
Frëchet kernel expressing this sensitivity is expressed as a double sum over all forward-
propagating body waves from the source and backward-propagating body waves from
the receiver to every single scatterer in the vicinity of this central ray. The kernel for
a di¡erential traveltime, measured by cross-correlation of two phases at the same
receiver, is simply the di¡erence of the respective single-phase kernels. In the paraxial
approximation, an absolute or di¡erential traveltime kernel can be computed extremely
economically by implementing a single kinematic and dynamic ray trace along each
source-to-receiver ray.

Key words: body waves, Frëchet derivatives, global seismology, ray theory,
tomography, traveltime.

1 INTRODUCTION

At the present time, geometrical ray theory is the basis of
essentially all global seismic traveltime tomography (Dziewonski
1984; Inoue et al. 1990; Pulliam et al. 1993; Grand1994;Van der
Hilst et al. 1997). In that approximation, the arrival time of a
body wave phase depends only upon the wave speed along the
geometrical ray path between the source and receiver. In fact,
ray theory is strictly valid only in the limit of a hypothetical
in¢nite-frequency wave; scattering, wave-front healing and other
di¡raction e¡ects render the traveltime of a ¢nite-frequency
seismic wave sensitive to 3-D structure o¡ the ray. In all of the
above-cited studies, an analyst or investigator has measured
each traveltime by hand-picking the ¢rst break; the use of
ray theory is generally justi¢ed by the argument that such a
picked time corresponds to the arrival of the highest-frequency
observable waves.
The widespread availability of broad-band digital data

has led to the recent development of automated traveltime
measurement techniques, based upon the cross-correlation of
an observed body wave phase with the corresponding spherical
earth synthetic phase (e.g. Su & Dziewonski 1992; Masters
et al. 1996). Cross-correlation methods have also been used
to measure the relative arrival times of a phase at a number of
stations in a seismic array (VanDecar & Crosson 1990) and
the di¡erential traveltime of two phases at the same station
(e.g. Kuo et al. 1987; Sheehan & Solomon 1991; Woodward &

Masters 1991). In a previous publication, we explored the 3-D
sensitivity of such absolute or di¡erential cross-correlation
traveltime measurements using a coupled surface wave version
of the Born approximation (Marquering et al. 1999). Para-
doxically, we found that the sensitivity of a ¢nite-frequency
teleseismic S wave is identically zero everywhere along the geo-
metrical ray! The geometry of the 3-D Frëchet kernel resembles
that of a hollow banana; in a cross-section perpendicular to
the ray, the shape resembles a doughnut. The cross-path width
of every such banana^doughnut kernel was found empirically
to depend upon the frequency content of the wave.
In the present paper (Banana^Doughnut I) and its

sequel (Hung et al. 2000, hereafter referred to as Banana^
Doughnut II), we describe an alternative procedure for com-
puting the Frëchet sensitivity kernel of a ¢nite-frequency,
cross-correlation traveltime. Instead of representing the kernel
as a double sum over all possible source-to-scatterer and
scatterer-to-receiver surface waves, as we did in Marquering
et al. (1999), we represent it as a double sum over all scattered
body waves. The resulting formulation is more general, inasmuch
as it is applicable to waves of arbitrarily low ray parameter,
including essentially vertically propagating multiple PcP and
ScS waves. In addition, it is much more economical; an
absolute traveltime kernel can be computed in the paraxial
approximation by means of a single kinematic and dynamic
ray trace along the unperturbed central ray. Perhaps most
importantly, the new Born body wave formulation provides
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a simple physical interpretation of many of the features of
the absolute and di¡erential kernels that were heretofore
only empirical. In particular, the dependence upon the power
spectrum of the cross-correlated pulse is now explicit; further-
more, the banana^doughnut character of a direct P-wave or
S-wave kernel, as well as the more intricate geometry of a
minimax PP or SS kernel, are simply explained.

2 PRELIMINARIES

Consider an isotropic elastic earth model occupying a volume
+ with surface L+. Denote the density by o and the Lamë
parameters by j and k; the compressional and shear wave speeds
are given in terms of these properties by a~[(jz2k)/o]1=2

and b~(k/o)1=2, respectively. The model may have a number
of internal solid^solid discontinuities, denoted by &SS, and a
number of internal £uid^solid discontinuities, denoted by &FS.
The union of all the boundaries, including the outer free
surface L+, will be denoted by &~L+|&SS|&FS. The unit
outward normal to & will be denoted by nª ; we use a z and {

to refer to the outside and inside of &, respectively. In most
global seismological applications, the unperturbed earth model
+ will be spherically symmetrical; that is, o, j, k and a, b will
be piecewise continuous functions only of radius r, and the
normal nª to & will be the unit radial vector rª . In the general
theory that follows, however, there is no need to assume this.
We shall, in the ensuing discussion, consider functions

of both time t and angular frequency u. Our Fourier sign
convention is that adopted by Dahlen & Tromp (1998):

f (u)~
�?
0

f (t) exp ({iut) dt , (1)

f (t)~
1
n
Re

�?
0

f (u) exp (iut) du , (2)

for every function f (t) of time that vanishes prior to t~0. We
have used the symmetry relation f ({u)~f 1(u), where the
asterisk denotes the complex conjugate, to limit the integration
in the inverse transform (2) to positive frequencies, 0¦u¦?.

2.1 Equations of motion

Let Grs(t) be the time-domain Green tensor, or displacement
response of the earth model at the location r of a receiver to
an impulsive force applied at time t~0 at a source point s. To
¢nd this impulse response, we must solve a boundary-value
problem of the form

LGrs~0 in + , (3)

[BGrs�z{~0 on & , (4)

subject to the initial conditions

Grs(0)~0 , LtGrs(0)~o{1I d(r{s) , (5)

where I is the identity tensor. The volumetric and boundary
operators in (3)^(4) are de¢ned by

LGrs~o L2tGrs{=(j= .Grs){= . fk[=Grsz�=Grs)T]g , (6)

BGrs~nª (j= .Grs)znª . fk[=Grsz(=Grs)T]g . (7)

The transposes in the representations (6)^(7) are over the ¢rst
two indices, so that the components of LG, for example, are
o L2t Gjk{Lj(jLiGik){Li[k(LiGjkzLjGik)]. The Green tensor also
satis¢es the obvious kinematic continuity conditions [Grs]z{~0
on &SS and [nª .Grs]z{~0 on &FS.

2.2 Body wave Green tensor

As noted earlier, our analysis is grounded upon an approxi-
mate JWKB solution to eqs (3)^(7). In this approximation, the
impulse response is expressed as a sum over all of the body
waves that propagate from the source s to the receiver r.
We write the Fourier transform of the response Grs(u) using
a slightly modi¢ed version of the ray-theoretical notation
employed by Dahlen & Tromp (1998, Sections 12.5 & 15.7):

Grs(u)~
1
4n

X
rays

pª rpª s(oroscrc
3
s )

{1=2 %rs R
{1
rs

| exp i({uTrszMrsn/2) . (8)

The subscripts s and r, as in os and or, denote evaluation at the
source s and the receiver r. The generic symbol c is shorthand
for the wave speed, either a or b; note that cs and cr need not be
of the same character if there is a conversion anywhere along
the geometrical ray path, as in the case of sP or ScP. The
quantity %rs is the product of signed +(energy)1=2 re£ection
and transmission coe¤cients at the various boundaries &
encountered along the ray path, and Rrs is the geometrical
spreading coe¤cient, analogous to the straight-ray source^
receiver distance kr{sk in a homogeneous medium. The
phase delay, or argument of the exponential, depends upon
the traveltime

Trs~

�r
s

dl
c

(9)

between the source and receiver, and upon the Maslov index
Mrs, which counts the number of n/2 phase shifts due to
passage of the wave through caustics. The integral in eq. (9) is
taken along all of the legs of a compound ray; the independent
variable dl is the di¡erential arclength. Finally, the unit vectors
pª s and pª r are the polarization directions of the wave upon
leaving the source and arriving at the receiver, respectively. The
polarization of a P wave is in the direction of propagation,
pª ~kê , whereas that of an S wave is transverse to the propagation
direction, i.e. kê . pª ~0, where kê is the unit wave vector. We
denote the two independent shear wave polarizations by qª 1 and
qª 2, and stipulate that the orthonormal triad of polarization
vectors qª 1, qª 2, kê is right-handed: (qª 1|qª 2) . kê ~1. A sketch
summarizing this polarization notation is given in Fig. 1. In

Figure 1. Cartoon of a geometrical ray from the source s to the
receiver r, showing the P-wave polarization, or unit wave vector, kê , and
the two transverse S-wave polarizations, qª 1 and qª 2.
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a spherically symmetric earth model, the subscripts 1 and 2
are associated with SV -polarized and SH-polarized waves,
respectively; that is, qª 1~qª SV and qª 2~qª SH .
The traveltime and number of caustic passages are

independent of whether the ray is traced from the source to
the receiver or vice versa:

Trs~Tsr , Mrs~Msr . (10)

The re£ection^transmission coe¤cient product and geometrical
spreading factor likewise satisfy the dynamical symmetries
(Dahlen & Tromp 1998, Sections 12.1.6, 12.1.7, 15.4.6 and 15.6.3)

%rs~%sr , csRrs~crRsr . (11)

Taken together, the results (10)^(11) guarantee that the
JWKB body wave Green tensor (8) satis¢es the principle of
source^receiver reciprocity: Gsr~GT

rs.
The time-domain Green tensor obtained by inverse Fourier

transformation of (8) is a sum of propagating pulses:

Grs(t)~
1
4n

X
rays

pª rpª s(oroscrc
3
s )

{1=2 %rs R
{1
rs d(Mrs)

H (t{Trs) : (12)

The symbol d(M)
H (t) denotes the M-times Hilbert transform of

the Dirac delta function, given by

d(M)
H (t)~

1
n
Re

�?
0

exp i(utzMn/2) du . (13)

Each passage of a wave through a caustic acts to Hilbert
transform the initial far-¢eld pulse d(t). The ¢rst two distorted
pulses are d(1)H (t)~{(nt){1 and d(2)H (t)~{d(t).

2.3 Moment tensor response

We model an earthquake as a temporally extended, synchronous
point source situated at the point s, with a moment-rate tensor
of the form

_M(t)~
���
2
p

M0Mê _m(t) . (14)

The quantity M0 is the scalar moment, Mê is the unit
source mechanism tensor, satisfying Mê 5Mê ~1, and _m(t) is
the normalized source time function, satisfying�tf
t0

_m(t) dt~1 , (15)

where t0 and tf are the start and end times of rupture,
respectively. The frequency-domain response to such a source
is given in terms of the body wave Green tensor Grs(u) by
(Dahlen & Tromp 1998, Sections 12.5.5 and 15.7.2)

s(u)~
���
2
p

M0(iu){1 _m(u)íª . [Mê 5=sGT
rs(u)] . (16)

The quantity s(u) is the íª component of the ground displace-
ment at the receiver r due to the earthquake at s, and _m(u) is
the Fourier transform of the source time function:

_m(u)~
�tf
t0

_m(t) exp ({iut) dt . (17)

In the JWKB approximation, the gradient =s with respect
to the source coordinates s in eq. (16) acts only upon the
rapidly oscillating exponential exp ({iuTrs) in (8), yielding
a multiplier =s?iuc{1

s kê s. Upon collecting the source and
receiver terms into factors

"~
���
2
p

M0(osc
5
s )

{1=2 Mê 5
1
2
(kê spª szpª skê s) , (18)

�~(orcr)
{1=2(íª . pª r) , (19)

we can write the frequency-domain moment tensor response in
the form (Dahlen & Tromp 1998, Sections 12.5.5 and 15.7.2)

s(u)~
1
4n

X
rays

"�%rsR
{1
rs _m(u) exp i({uTrszMrsn/2) . (20)

The corresponding displacement in the time domain obtained
by inverse Fourier transformation of (20) is

s(t)~
1
4n

X
rays

"�%rsR
{1
rs _m(Mrs)

H (t{Trs) . (21)

The pulse shape of all least-time arrivals such as P and S is
the source time function _m(t); every passage through a caustic
acts to Hilbert transform this far-¢eld source time function.
The quantity Mê 5 1

2 (kê spª szpª skê s) is the radiation pattern of the
outgoing waves upon the focal sphere surrounding the source.
Anelastic attenuation and the associated dispersion can be

accounted for by allowing the wave speed to be complex:

c?c0 1z
1
2
iQ{1

c z
1
n
Q{1

c ln (u/u0)
� �

, (22)

where c0 is the speedöeither a0 or b0öat the reference
frequency u0, and Qc denotes either the P-wave quality factor
Qa or the S-wave quality factor Qb. We ignore the e¡ect of
attenuation upon the ray geometry, but incorporate its e¡ect
upon the complex traveltime by substituting for the Fourier
transform of the source time function in the frequency-domain
ray sum (20):

_m(u)? _m(u) exp iu
1
2
iTrs

1z
1
n
Trs
1 ln (u/u0)

� �
, (23)

where

Trs
1~

�r
s

dl
c0Qc

(24)

is the attenuation time. The resulting damping, broadening
and delay of the time-domain pulse can be accounted for by
convolution with a causal attenuation operator:

_m(t)? _m(t) (25)

� 1
n
Re

�n

0
exp iu tz

1
2
iTrs

1z
1
n
Trs
1 ln (u/u0)

� �
du .

We shall henceforth assume that _m(u) and _m(t) have been
anelastically altered in accordance with (23) and (25). The
altered spectrum and pulse shape are path-dependent; however,
we shall not bother to revise the notation to re£ect this.
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3 BORN APPROXIMATION

Suppose now that the density and Lamë parameters of the
earth model are subjected to an in¢nitesimal perturbation:

o?ozdo , j?jzdj , k?kzdk . (26)

The associated perturbations in the compressional and shear
wave speeds are given by

2oa da~djz2 dk{do a2 , 2ob db~dk{do b2 . (27)

We restrict attention in the present pair of papers to a strictly
volumetric perturbation of the form (26)^(27). The locations of
the boundaries & and the associated unit normals nª are assumed
to be ¢xed. As already noted, the unperturbed parameters
o, j, k and a, b in most global seismological applications will
be spherical; the perturbations do, dj, dk and da, db in that case
represent the earth's unknown 3-D heterogeneity.

3.1 Perturbed Green tensor

The volumetric and boundary operators (6)^(7) and the Green
tensors (8) and (12) are altered as a result of the perturbations
to the earth model:

L?LzdL , B?BzdB , (28)

Grs?GrszäGrs . (29)

We can ¢nd the perturbation to the Green tensor äGrs correct
to ¢rst order in do, dj and dk using the Born approximation. In
the time domain, we are required to solve an inhomogeneous
version of (3)^(4):

L äGrs~{dLGrs in + , (30)

[B äGrs�z{~{�dBGrs�z{ on & , (31)

subject to the initial conditions

äGrs(0)~0 , LtäGrs(0)~0 . (32)

The right sides of (30) and (31) may be regarded as
speci¢ed body and surface forces acting within + and upon
&, respectively; the solution is simply the superposition of
the responses to these applied forces. To avoid an additional
convolution over time, it is convenient to express the solution
(via the substitution L2t?{u2) in the frequency domain:

äGrs~{

���
+

[Grx . dLGxs] d3x

z

��
&
[Grx . dBGxs]z{ d2x , (33)

where

dLGxs~{u2 doGxs{=(dj = .Gxs)

{= . fdk[=Gxsz(=Gxs)T]g , (34)

dBGxs~nª (dj = .Gxs)znª . fdk[=Gxsz(=Gxs)T]g . (35)

The spatial integration variable x in this representation of
äGrs(u) may be considered to range over all point scatterers
within + and on &. All three perturbations do, dj, dk in
(34)^(35) are evaluated at the location of the scatterer x, and all
of the spatial gradients = are =x. Gauss' theorem can be used to

eliminate the derivatives of the model parameters do, dj and dk
in the volume integral over +. The surface integrals over & in
eq. (33) are cancelled by the corresponding integrals that arise
in this integration by parts, yielding

äGrs~

���
+

do (u2Grx .Gxs) d3x

{

���
+

dj (= .GT
rx)(= .Gxs) d3x

{

���
+

dk (=Grx)T5[=Gxsz(=Gxs)T] d3x , (36)

where the double contraction as well as all of the transposes are
over the ¢rst two indices.
The result (36) does not depend upon the speci¢c forms of

the source-to-scatterer and scatterer-to-receiver Green tensors
Gxs(u) and Grx(u); in fact, we used precisely this result,
together with a surface wave representation of these two
unperturbed Green tensors, to obtain the cross-correlation
traveltime kernels in Marquering et al. (1999). As noted in the
Introduction, we switch to a body wave ray sum representation
of Gxs(u) and Grx(u) here. Upon substituting (8) and allowing
the gradient =~=x to operate only upon the rapidly oscillating
exponentials exp ({iuTxs) and exp ({iuTrx), in accordance
with the JWKB approximation, we can recast (36) into the
convenient form (Hudson 1977; Wu & Aki 1985; Zhao &
Dahlen 1996)

äGrs(u)~u2
���

+
[Grx(u) . (oS) .Gxs(u)] d3x , (37)

where the quantity S~Sxx is a second-order tensor that
encapsulates all of the details regarding the scattering of an
incoming body wave into an outgoing wave at the point x. We
can utilize the relations (27) to express this scattering tensor in
terms of the wave speed and density perturbations da, db and
do rather than dj, dk and do:

S~

�
da
a

�
Saz

db
b

� �
Sbz

do
o

� �
So , (38)

where

Sa~{2
a2

c0c00

� �
kê 00kê 0 , (39)

Sb~2
b2

c0c00

 !
[2 kê 00kê 0{kê 0kê 00{(kê 0 . kê 00)I ] , (40)

So~I{
a2{2b2

c0c00

 !
kê 00kê 0{

b2

c0c00

 !
[kê 0kê 00z(kê 0 . kê 00)I ] . (41)

The prime and double prime in eqs (39)^(41) distinguish
quantities evaluated along the incoming and outgoing ray
paths at the scatterer x, respectively. Two distinct generic wave
speeds c0 and c00 arise because of the possibility of P-to-S and
S-to-P scattering at x.
The wave vector and polarization notation associated with a

source-to-scatterer-to-receiver path is summarized in Fig. 2.
The incoming and outgoing wave speeds c0, c00 and wave vectors
kê 0, kê 00 are interchanged in the representations (39)^(41) in the
case of a wave travelling along the reversed path from the
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receiver r to the source s. The ¢rst-order perturbation to the
Green tensor therefore satis¢es the principle of source^receiver
reciprocity, äGsr~äGT

rs.
The explicit factor of u2 in eq. (37) is a characteristic feature

of Rayleigh scattering. High-frequency waves are scattered
more strongly than low-frequency waves; the scattered power
varies as u4. Scattered pulses in the time domain are twice-
di¡erentiated versions of the corresponding unscattered pulses;
thus, contributions to äGrs(t) that have not passed through a
caustic exhibit a +�d(t) time dependence, scattered waves that
have passed through one caustic exhibit a +�d (1)

H (t)~+(2/n)t{3

time dependence, and so on.

3.2 Perturbed seismogram

The ¢rst-order perturbation to the frequency-domain syn-
chronous moment tensor response (20) is given by the obvious
generalization of eq. (16):

ds(u)~
���
2
p

M0(iu){1 _m(u)íª . [Mê 5=säGT
rs(u)] . (42)

We continue to use a prime and double prime to denote
the source-to-scatterer and scatterer-to-receiver ray paths,
respectively, and introduce the perturbed source and receiver
factors analogous to (18)^(19):

"0~
���
2
p

M0(osc
5
s )

{1=2 Mê 5
1
2
(kê 0spª

0
szpª 0skê

0
s) , (43)

�00~(orcr)
{1(íª . pª 00r ) . (44)

The perturbed frequency-domain response (42) can be written
after some manipulation in the form

ds(u)~
u
4n

� �2 ���
+

�X
rays0

X
rays00

(c0c003){1=2

|"0�00%xs%rx(RxsRrx){1(pª 00 .S . pª 0) _m(u)

| exp i[{u(TxszTrx)z(MxszMrx)n/2]
�
d3x . (45)

The notation in (45) should, hopefully, be self-explanatory: %xs

and %rx are the re£ection^transmission coe¤cient products,
Rxs and Rrx are the geometrical spreading factors, Txs and
Trx are the traveltimes, and Mxs and Mrx are the Maslov
indices along the primed source-to-scatterer and double-primed
scatterer-to-receiver ray paths, respectively. The corresponding

¢rst-order perturbation to a seismogram in the time domain is

ds(t)~{
1
4n

� �2 ���
+

�X
rays0

X
rays00

(c0c003){1=2

|"0�00%xs%rx(RxsRrx){1(pª 00 .S . pª 0)

|�m:(MxszMrx)
H (t{Txs{Trx)

�
d3x , (46)

where the triple dot denotes the third time derivative.

3.3 Abbreviated notation

It is convenient in what follows to rewrite the results (45)
and (46) in terms of double-prime rays00 that are traced from
the receiver r to the scatterer x, rather than vice versa. This is
easily done using the obvious generalizations of the symmetries
(10)^(11):

Trx~Txr , Mrx~Mxr , (47)

%rx~%xr , c00Rrx~crRxr . (48)

At the same time, we shall introduce a new streamlined
notation, which eliminates as many of the subscripts referring
to s, r and x as possible. In this new notation, we distinguish
quantities associated with the unperturbed ray, the forward
source-to-scatterer ray0, and the backward receiver-to-scatterer
ray00 by the presence of no prime, a single prime and a double
prime, respectively:

T~Trs , T 0~Txs , T 00~Txr , (49)

M~Mrs , M0~Mxs , M00~Mxr , (50)

%~%rs , %0~%xs , %00~%xr , (51)

R~Rrs , R0~Rxs , R00~Rxr . (52)

The unperturbed frequency-domain response (20) and the
time-domain seismogram (21) can then be written using no
subscripts whatsoever in the form

s(u)~
1
4n

X
rays

"�%R{1 _m(u) exp i({uTzMn/2) , (53)

s(t)~
1
4n

X
rays

"�%R{1 _m(M)
H (t{T ) . (54)

The corresponding frequency-domain and time-domain
perturbations (45)^(46) are

ds(u)~
u
4n

� �2 ���
+

�X
rays0

X
rays00

c{1
r (c0c00){1=2

|"0�00%0%00(R0R00){1(pª 00 .S . pª 0) _m(u)

| exp i[{u(T 0zT 00)z(M0zM00)n/2]
�
d3x , (55)

ds(t)~{
1
4n

� �2 ���
+

�X
rays0

X
rays00

c{1
r (c0c00){1=2

|"0�00%0%00(R0R00){1(pª 00 .S . pª 0)

|�m:(M
0zM 00)

H (t{T 0{T 00)
�
d3x . (56)

s

r
ray″

k″ˆ
r

ray

ray′

x
k̂ r

k″ˆ

k′ˆ

k′ˆ
s

k̂s

Figure 2. The Born approximation accounts for all singly scattered
waves that propagate along a composite path ray0, ray00 from the source
s to an arbitrary point heterogeneity x, and then to the receiver r. The
take-o¡ wave vectors along the unscattered and scattered paths at
the source s are kê s and kê 0s, respectively; the incoming and outgoing
wave vectors at the scatterer x are kê 0 and kê 00, respectively; the arrival
wave vectors along the unscattered and scattered paths at the receiver r
are kê r and kê 00r , respectively.
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The double sums in eqs (55)^(56) are over all possible forward
rays0 from the source s and backward rays00 from the receiver r
to the scatterer x.

3.4 Rayleigh scattering coe¤cient

The quantity pª 00 .S . pª 0 in eqs (55) and (56) is a dimensionless
measure of the scattering strength of a wave with incoming
polarization pª 0 into an outgoing wave with polarization pª 00 at
the point x. We de¢ne three normalized Rayleigh scattering
coe¤cients, one associated with each of the three types of

volumetric heterogeneity da, db, do, by

)a,b,o~{
1
2
(pª 00 .Sa,b,o . pª 0) . (57)

The coe¤cients )P?P
a,b,o , )S?S

a,b,o , )P?S
a,b,o and )S?P

a,b,o for both like-
type and unlike-type scattering are summarized in Table 1; the
polarization vectors of the incoming and outgoing P and S
waves are denoted by kê 0, kê 00 and qª 0, qª 00, respectively. Recall
that the S-wave polarization is degenerate, with two ortho-
normal possibilities qª 1, qª 2 for both qª 0 and qª 00. There are thus
a total of 27 scattering coe¤cients in a spherical earth:
P, SV , SH?P, SV , SH for each of da, db, do. Only P?P
scattering o¡ of a compressional wave heterogeneity is isotropic;
the normalization factor {1/2 in the de¢nition (57) has been

Table 1. Normalized coe¤cient )a,b,o for Rayleigh scattering of a far-
¢eld body wave o¡ a point heterogeneity da, db, do. The quantities
kê 0, kê 00 and qª 0, qª 00 are the incoming and outgoing P-wave and S-wave
polarizations, respectively.

P?P scattering:
)a~1

)b~{2(b/a)2[1{(kê 0 . kê 00)2]

)o~
1
2(1{kê 0 . kê 00){(b/a)2[1{(kê 0 . kê 00)2]

S?S scattering:
)a~0

)b~(kê 0 . kê 00)(qª 0 . qª 00)z(kê 0 . qª 00)(kê 00 . qª 0)

)o~
1
2 [{qª 0 . qª 00z(kê 0 . qª 00)(kê 00 . qª 0)z(kê 0 . kê 00)(qª 0 . qª 00)]

P?S scattering:
)a~0

)b~2(b/a)(kê 0 . kê 00)(kê 0 . qª 00)

)o~{1
2(kê
0 . qª 00)z(b/a)(kê 0 . kê 00)(kê 0 . qª 00)

S?P scattering:
)a~0

)b~2(b/a)(kê 00 . kê 0)(kê 0 . qª 00)

)o~{ 1
2 (kê

00 . qª 0)z(b/a)(kê 00 . kê 0)(kê 00 . qª 0)

Figure 3. Geometrical convention used to plot the 27 absolute
Rayleigh scattering coe¤cients in Fig. 4. The unit radial vector rª
speci¢es the direction of the local vertical at the scatterer x; shading
denotes the vertical planes containing the horizontal incoming ray0

and scattered outgoing ray00. The incoming and outgoing SV and SH
polarizations are within and perpendicular to these planes, respectively.

Figure 4. Perspective plots of the 27 possible absolute Rayleigh scattering coe¤cients j)P,SV ,SH?P,SV ,SH
a,b,o j for the geometry shown in Fig. 3. The

right-handed axes in each case are centred on the scatterer x, and aligned along the P, SV, SH polarizations of the incoming ray0; arrows denote
the direction of the incident wave vector kê 0. The viewpoint makes it clear that the forward-scattering (kê 00~kê 0) amplitude is zero, except for P?P
scattering o¡ a heterogeneity da in P-wave speed, and SV?SV or SH?SH scattering o¡ a heterogeneity db in S-wave speed. Each of these like-type
forward-scattering processes has a normalized Rayleigh coe¤cient of unity: )P?P

a ~)SV?SV
b ~)SH?SH

b ~1.
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introduced so that )P?P
a ~1.We present a pictorial glossary of

the 27 possible spherical earth scattering coe¤cients in Figs 3
and 4. The quantity plotted in each case is the absolute
magnitude of the scattering strength, j)P,SV ,SH?P,SV ,SH

a,b,o j, for
the particular case of a horizontally propagating incoming
wave.

4 CROSS-CORRELATION TRAVELTIME
MEASUREMENT

Luo & Schuster (1991) presented an explicit expression for the
Frëchet derivative of a seismic traveltime measured by cross-
correlation of an observed and a synthetic waveform. Unaware
of this work, Marquering et al. (1999) derived an equivalent
formula, and extended it to the case of a di¡erential traveltime
measured by cross-correlation of two observed waveforms.
These results are brie£y summarized here, in the interest
of completeness. We regard a, b, o as an initial earth model,
for which we are able to compute synthetic body wave
seismograms s(t), either by evaluating the JWKB ray-sum
representation (54) or by some other method. Our objective is
to relate an absolute or di¡erential traveltime measurement to
the unknown perturbations da, db and do.

4.1 Absolute traveltime

Consider ¢rst the case of a single, well-isolated phase such as
P, PP, PcP or S, SS, ScS that arrives during a time interval
t1¦t¦t2. The cross-correlation of the synthetic and observed
pulses is

!(q)~
�t2
t1
s(t{q)sobs(t) dt . (58)

We assume that sobs(t) can be adequately represented by a
superposition of eqs (54) and (56):

sobs(t)~s(t)zds(t) . (59)

The cross-correlation (58) may in that case be written as a sum
of a zeroth-order and a ¢rst-order term:

!(q)~c(q)zdc(q) , (60)

where

c(q)~
�t2
t1
s(t{q)s(t) dt , (61)

dc(q)~
�t2
t1
s(t{q)ds(t) dt . (62)

In applications, the traveltime shift dT~Tobs{T of the
observed phase sobs(t) with respect to the synthetic s(t) is
determined by ¢nding the maximum of !(q). The unperturbed
cross-correlation c(q) obviously attains its maximum at zero
lag: Lqc(0)~0. In the vicinity of this unperturbed maximum, we
can expand (60) in a Taylor series, keeping terms of second
order in the peak shift dq:

!(dq)~c(0)zdq Lqc(0)z
1
2

dq2 Lqqc(0)zdc(0)zdq Lqdc(0)

~c(0)z
1
2

dq2 Lqqc(0)zdc(0)zdq Lqdc(0) . (63)

To ¢nd the shift in the position of the maximum we di¡erentiate
(63) with respect to dq and set the result equal to zero:

Ldq c(0)z
1
2

dq2 Lqqc(0)zdc(0)zdq Lqdc(0)
� �

~0 , (64)

or, equivalently,

dq~{
Lqdc(0)
Lqqc(0)

. (65)

Upon carrying out the indicated operations in (65) and making
the identi¢cation dq~dT , we obtain the ¢nal result

dT~

�t2
t1

_s(t) ds(t) dt�t2
t1

�s(t)s(t) dt
~

Re

�?
0

iu s1(u) ds(u) du�?
0

u2js(u)j2 du
, (66)

where the asterisk denotes complex conjugation. We have
assumed that s(t) and ds(t) both vanish outside the cross-
correlation interval t1¦t¦t2, and used Parseval's equation to
obtain the second equality. A negative traveltime shift, dT < 0,
corresponds to an advance in the arrival of the observed pulse
sobs(t) with respect to the synthetic pulse s(t), whereas a positive
traveltime shift, dT > 0, corresponds to a delay.

4.2 Di¡erential traveltime

The result (66) can be easily generalized to a shift in di¡erential
traveltime,

*T~TB{TA , (67)

measured by cross-correlation of two observed seismograms,

sobsA (t)~sA(t)zdsA(t) and sobsB (t)~sB(t)zdsB(t) .

The two signals A and B can either be the same phase, recorded
at two closely spaced stations, or they can be two di¡erent
phases, recorded at the same station. The cross-correlation

!(q)~
�t2
t1
sobsA (t{q)sobsB (t) dt (68)

can again be decomposed into a zeroth-order and a ¢rst-order
term:

!(q)~c(q)zdc(q) , (69)

where

c(q)~
�t2
t1
sA(t{q)sB(t) dt , (70)

dc(q)~
�t2
t1
[sA(t{q) dsB(t)zdsA(t{q)sB(t)] dt . (71)

The unperturbed cross-correlation in this case attains its
maximum at the di¡erential traveltime (67) between the two
phases A and B in the spherical earth model. The perturbations
da, db, do shift the position q of this maximum by an amount
dq~d(*T ). The Taylor series expansion of (69) about the
spherical earth maximum is

!(qzdq)~c(q)zdq Lqc(q)z
1
2

dq2 Lqqc(q)zdc(q)zdq Lqdc(q)

~c(q)z
1
2

dq2 Lqqc(q)zdc(q)zdq Lqdc(q) , (72)
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where we have once again used the unperturbed condition
Lqc(q)~0 to obtain the second equality. The shift in the
maximum is obtained from the perturbed condition

Ldq c(q)z
1
2

dq2 Lqqc(q)zdc(q)zdq Lqdc(q)
� �

~0 . (73)

This leads to a result identical to (65), with the argument zero
replaced by the unperturbed lag q:

dq~{
Lqdc(q)
Lqqc(q)

. (74)

Upon making the identi¢cations q~*T and dq~d(*T ), we
¢nd that

d(*T )~

�t2
t1
[ _sA(t{*T ) dsB(t)zd _sA(t{*T )sB(t)] dt�t2

t1
�sA(t{*T )sB(t) dt

~

Re

�?
0

iu[sA1(u) dsB(u)zdsA1(u) sB(u)] eiu*T du

Re

�?
0

u2sA1(u) sB(u) eiu*T du
, (75)

where the asterisks again denote complex conjugation in the
frequency domain.

5 TRAVELTIME FREè CHET KERNEL

Determination of the ¢rst-order dependence of an absolute or
di¡erential traveltime measurement upon the perturbations
da, db, do is now a straightforward matteröwe simply employ
the JWKB representations (53) and (55) in eqs (66) and (75),
and interchange the order of integration.

5.1 Single-phase kernel

In the case of an absolute traveltime dT , we regard s(u) as a
single phase, that is, a single ray in the representation (53). We
retain the double summation over source-to-scatterer rays0 and
receiver-to-scatterer rays00 in (55) to guarantee the inclusion of
all possible scattered waves that may arrive during the time
interval of interest, t1¦t¦t2. Note that the concatenation of
rays0 and rays00 need not be of the same `type' as the central ray;
for example, scattered waves that never experience a surface
re£ection may arrive in the same time window as a PP or SS
wave, and thus contribute to the cross-correlation traveltime
shift dT , as illustrated in Fig. 5.
It is convenient to de¢ne the dimensionless product of ratios

N~
"0

"

� �
�00

�

� �
%0%00

%

� �

~
Mê 5

1
2
(kê 0spª

0
szpª 0skê

0
s)

Mê 5
1
2
(kê spª szpª skê s)

264
375 íª . pª 00r

íª . pª r

� ��
%xs%xr

%rs

�
. (76)

The traveltime perturbation dT can be written in the form

dT~

���
+

Ka

�
da
a

�
zKb

db
b

� �
zKo

do
o

� �� �
d3x , (77)

where

Ka,b,o~{
1
2n

X
rays0

X
rays00

N)a,b,o
1��������
c0c00
p
� ��

R

crR0R00

�

|

�?
0

u3j _m(u)j2 sin [u(T 0zT 00{T ){(M0zM00{M)n/2] du�?
0

u2j _m(u)j2 du
.

�78)
The three amigos Ka, Kb, Ko in eq. (77) are the 3-D Frëchet
kernels relating the observable dT to the fractional perturbations
da/a, db/b, do/o in compressional wave speed, shear wave
speed and density. Eq. (78) provides an explicit representation
of these kernels as a sum over forward rays0 and backward
rays00.
The power spectrum j _m(u)j2 of the source time function

speci¢es the frequency content of the cross-correlated
arrivals. This serves as a reminder that Ka, Kb, Ko are the
Frëchet kernels of a ¢nite-frequency traveltime measure-
ment dT . If the synthetic and observed seismograms, s(t)
and sobs(t), are bandpass ¢ltered prior to cross-correlation,
the power spectrum will be altered, j _m(u)j2?j _m(u)j2filtered,
and the kernels Ka, Kb, Ko will all change. The common
factor sin [u(T 0zT 00{T ){(M0zM00{M)n/2] is identically

Figure 5. A `like-type' scattering path is one that has the same
number and type of boundary interactions as the unperturbed ray path,
whereas an `unlike-type' scattering path is one that does not. Both
`types' of scattering paths must be included in evaluating the double
sum (78) over rays0, rays00. In this example, the unperturbed ray path
is that of a PP or SS wave, with a single underside re£ection o¡ the
free surface. (Top and middle) Two `like-type' scattering paths, with
one surface re£ection each, along the ray0 from the source s to the
scatterer x, and along the ray00 from the scatterer to the receiver r,
respectively. (Bottom) An `unlike-type' scattering path, with no free-
surface re£ections. The traveltime T 0zT 00 along all three of these paths
can be very near the unperturbed traveltime T ; for this reason, they can
contribute signi¢cantly to the Frëchet kernel K.
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equal to zero at every scattering point x along a least-time
(M1~M2~0) geometrical ray; this provides an immediate
explanation of the banana^doughnut character of a direct
P-wave or S-wave kernel. We shall elaborate upon this
explanation and also show how (78) explains the more
complicated geometry of a minimax PP or SS kernel in
Banana^Doughnut II.

5.2 Di¡erential kernel

To obtain the Frëchet kernel for a di¡erential traveltime
measurement d(*T )~d(TB{TA), we model each of the phases
sA(u) and sB(u) as a single ray in (53), with associated amplitude
pre-factors "A�A%A and "B�B%B, geometrical spreading
factors RA and RB, and traveltimes TA and TB. The ratio of
integrals (75) reduces to its simplest form in the special case
that the Maslov indices of the phases A and B are identical,
so that the two cross-correlated pulses have the same shape:

MA~MB [ _m(MA)
H (t)~ _m(MB)

H (t) . (79)

In practice, this is the only case of interest; in fact, any
inequality MA=MB in the number of caustic phase shifts is
commonly recti¢ed by processing, for example, by Hilbert
transformation of P or S prior to cross-correlation with the
minimax phases PP or SS (Kuo et al. 1987; Sheehan &
Solomon 1991;Woodward &Masters 1991). The perturbations
dsA(u) and dsB(u) are considered to be identical double sums
(55) over all possible rays0 and rays00: dsA(u)~dsB(u)~ds(u).
With these assumptions, we ¢nd that the di¡erential traveltime
perturbation (75) can be written in a manner analogous to (77),
namely,

d(*T )~
���

+
Ka

�
da
a

�
zKb

db
b

� �
zKo

do
o

� �� �
d3x . (80)

The pre-factors "A�A%A, "B�B%B, spreading factorsRA, RB

and exponentials exp ({iuTA), exp ({iuTB), exp (iu *T )
conspire so that the kernels in (80) reduce to

KB{A
a,b,o ~KB

a,b,o{KA
a,b,o if MA~MB . (81)

The result (81) has an elegant physical interpretation: every
Frëchet kernel KB{A

a,b,o for an `identical pulse shape' di¡erential
traveltime measurement, d(*T )~d(TB{TA), is simply the
di¡erence of the individual Frëchet kernels,KB

a,b,o{KA
a,b,o. Strictly

speaking, the implication (79) is valid only in a perfectly elastic
earth; if there is a substantial di¡erence in the attenuation
times of the two phases, TA

1=TB
1, it may be necessary to apply

an attenuation equalization, as well as a Hilbert transformation,
to either phase A or phase B prior to cross-correlation.

5.3 Summary of computational procedure

Let us summarize the steps needed to compute a single-phase
Frëchet kernel Ka,b,o.

(1) Trace the geometrical ray corresponding to the phase of
interest from the source s to the receiver r.
(2) Compute the traveltime T, the Maslov index M, the

re£ection^transmission product %, the geometrical spreading
factor R, and the source and receiver factors " and � along
this central ray.

(3) Trace all possible forward rays0 from the source s and all
possible backward rays00 from the receiver r to every scatterer x
in +.
(4) Compute the traveltimes T 0, T 00, the Maslov indices

M0, M00, the re£ection^transmission products %0, %00, the
geometrical spreading factors R0, R00, the source and receiver
factors "0, �00, and the scattering cross-sections )a,b,o along
each of these scattered rays0, rays00.
(5) Finally, evaluate the double sum (78).

The need to trace all possible rays0 from the source s and
rays00 from the receiver r to every scatterer x in + makes this
procedure computationally intensive.

5.4 Validity

Two distinct approximations are embodied in the results
(77)^(78) and (80)^(81). First, we have systematically linearized
the dependence of an absolute or di¡erential cross-correlation
traveltime shift dT , d(*T ) upon the model perturbations
da, db, do. Such a linearization is appropriate, since our
objective is to compute the ¢rst-order Frëchet derivatives
LT/La, LT/Lb, LT/Lo and L(*T )/La, L(*T )/Lb, L(*T )/Lo. If
we were able to use the exact unperturbed Green tensors Grx

andGxs to compute the perturbed Green tensor äGrs in eq. (36),
then (66) and (75) would yield the exact Frëchet derivatives.
It follows that the results (78) and (81) fail to give the exact
Frëchet kernels Ka,b,o only as a result of our second approxi-
mationöthe use of a ray-theoretical representation (8) of Grx

and Gxs in (36).
The conditions guaranteeing the validity of such a ray-

theoretical representation of the response are well knownöthe
unperturbed parameters a, b, o must be smooth everywhere
in +, except at the internal discontinuities &SS and &FS

(Cí ervenÿ et al. 1977; Cí ervenÿ & Hron 1980; Cí ervenÿ 1985;
Kravstov & Orlov 1990; Dahlen & Tromp 1998, Sections 15.1
and 5.2). Core-grazing rays and other source^receiver paths
for which ray theory is known to fail must be avoided; with that
proviso, the results (78) and (81) should provide an accurate
representation of the Frëchet kernels Ka,b,o everywhere within
a piecewise-smooth earth model a, b, o. If another numerical
method such as normal-mode or surface wave summation has
been used to synthesize the seismogram s(t), which is cross-
correlated with sobs(t), it may be prudent to verify that the
waveform is in reasonable agreement with ray theory.
The remarks in the previous paragraph only address the

issue of the accuracy of the ray-theoretical representation of
the Frëchet kernels (78) and (81). There remains the question
of the accuracy of the ¢rst-order relationships (77) and (80)
expressing an absolute or di¡erential traveltime measurement
dT or d(*T ) in terms of these Frëchet kernels. This is, in a sense,
a familiar question, since it arises whenever a geophysical
inverse problem is linearized. As usual in applications of
the Born approximation, the perturbations da, db, do may be
arbitrarily rough throughout the earth model+, provided they
are su¤ciently slight:

jdaj%a , jdbj%b , jdoj%o . (82)

The precise meaning of the symbol % in (82) is a complicated
issue, which depends upon the frequency and wavelength of
the dominant waves in the pulses s(t) and sobs(t), the charac-
teristic scale length of the 3-D heterogeneity da, db, do, and
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the propagation distance between the source s and receiver r.
In practice, measured traveltime shifts dT and d(*T ) will
be well described by the local linearized relations (77) and
(80) only if they are small compared to the dominant period
of the cross-correlated waves. Longer traveltime shifts, cycle
skips and signi¢cant pulse distortions due to heterogeneity-
induced multipathing cannot be modelled using the Born
approximation.

6 PARAXIAL APPROXIMATION

In this section, we describe an approximate procedure for com-
puting Ka,b,o, which eliminates the need to conduct repeated
two-point ray tracing. This approximation is motivated by the
observation that the traveltime shift dT is generally sensitive
only to the perturbations da, db, do in a relatively slender
hollow banana surrounding the central geometrical ray. A
rough rule of thumb is that Ka,b,o&0 at any scatterer x that is
not within the ¢rst Fresnel zone, de¢ned by

0¦�u(T 0zT 00{T )¦n , (83)

where �u is the dominant frequency in the power spectrum
j _m(u)j2 of the cross-correlated pulse. Whenever the traveltime
di¡erence T 0zT 00{T is signi¢cantly greater than that given
by (83), the magnitude of the kernel Ka,b,o is diminished by
destructive interference of adjacent frequencies u and uzdu
in the integral (78). To obtain an approximate kernel, we
systematically exploit this con¢nement of the strong sensitivity
of dT to the immediate vicinity of the central ray.

6.1 Forward scattering

We ignore all source-to-scatterer-to-receiver paths that are not
of the same `type' as the unperturbed path; it is conventional to
refer to the `like-type' scattering paths in the vicinity of the
central ray as paraxial rays. We begin by noting that the initial
and ¢nal wave vector and polarization on such a paraxial ray
path are, to a ¢rst approximation, identical to those on the
central ray path; that is, kê 0s~kê s, pª 0s~pª s and kê 00r ~kê r, pª 00r ~pª r at
the source s and the receiver r, respectively. Waves travelling
along the two paths experience very nearly the same boundary
interactions, so that, to the same approximation, %xs%xr~%rs.
Combining these results, we ¢nd that the pre-factor (76)
reduces to

N~1 : (84)

The outgoing and incoming wave vectors at the scatterer x are
likewise nearly identical: kê 00~kê 0. The outgoing shear wave
polarization may be chosen arbitrarily; we specify that qª 00~qª 0.
Upon examining the formulae in Table 1, we ¢nd that only
P?P scattering o¡ a compressional wave-speed heterogeneity
da and like-type S?S scattering o¡ a shear wave-speed
heterogeneity db are signi¢cant in this forward-scattering
approximation. Furthermore, the normalized amplitude of
each of these forward-scattering processes is unity:

)P?P
a ~)SV?SV

b ~)SH?SH
b ~1 , (85)

all other )P,SV ,SH?P,SV ,SH
a,b,o ~0 . (86)

The results (85)^(86) may also be veri¢ed by visual inspection
of Fig. 4.

6.2 Ray-centred coordinates

It is convenient in the paraxial approximation to express the
position of every scatterer in the form

x~îzq , (87)

where î is the nearest point on the central ray path, as
illustrated in Fig. 6. The di¡erence vector satis¢es kê . q~0,
where kê is the unit wave vector at î. Points s¦î¦r along the
central ray can be parametrized by the arclength 0¦l¦L,
where the endpoints l~0 and l~L correspond to the source
s and receiver r, respectively. Upon decomposing q into two
orthogonal components, q~q1qª 1zq2qª 2, we can represent every
scatterer x in terms of the so-called ray-centred coordinates
(Cí ervenÿ & Hron 1980; Cí ervenÿ 1985):

x~(q1, q2, l) . (88)

In a spherically symmetric earth, we choose qª 1~qª SV and
qª 2~qª SH , as already noted. In that case, q1 and q2 are measured
within and perpendicular to the central ray plane, respectively.
The ratio of geometrical spreading factors in the ¢rst line of
eq. (78) can be approximated by the corresponding ratio on the
central ray:

Rrs

crRxsRxr
~

Rrs

crRmsRmr
, (89)

where we have reverted to our original subscript-laden
notation for clarity.

6.3 Traveltime di¡erence

Turning next to the phase factors in the argument of the
oscillatory term sin [u(TxszTxr{Trs){(MxszMxr{Mrs)n/2],
we replace the Maslov indices by their values on the central
ray:

Mxs~Mms , Mxr~Mmr . (90)

The only deviation of the paraxial from the central ray that
is accounted for is the di¡erence in traveltime. The result-
ing approximation is self-consistent, since TxszTxr{Trs is
multiplied by the frequency u, and we are interested in the
high-frequency limit, u??. Following Cí ervenÿ & Hron
(1980) and Cí ervenÿ (1985), we approximate the paraxial time
di¡erence by a quadratic:

TxszTxr{Trs~
1
2
qT . (MmszMmr) . q . (91)

Figure 6. Perpendicular projection of a scatterer x onto the paraxial
point î, situated on the central geometrical ray from the source s to
the receiver r. The o¡-path di¡erence vector is expressed in terms of the
two orthogonal shear wave polarizations: q~q1qª 1zq2qª 2. The ray-
centred coordinates of the scatterer are x~(q1, q2, l), where l is the
arclength along the central ray.
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There is no term linear in the o¡-path vector q by virtue of
the stationarity of the traveltime along the central ray. The
quantities Mms and Mmr are the 2|2 Hessian matrices, whose
entries are the second partial derivatives L2T/LqiLqj of the
traveltime ¢eld at the point î, measured from the source s and
the receiver r, respectively.

6.4 Properties of the Hessian

The eigenvalues of the matrices cMms and cMmr are the principal
curvatures of the forward- and backward-propagating wave
fronts emanating from s and r. Since wave-front curvature is
a manifestation of geometrical spreading, it is not surprising
that there is an intimate relation between the spreading factors
Rms, Rmr and the Hessians Mms, Mmr. We adapt an argument
by Snieder & Chapman (1998) to obtain this relation in the
present section.
Cí ervenÿ & Hron (1980) and Cí ervenÿ (1985) show that the

source and receiver Hessians satisfy a pair of forward and
backward Ricatti equations:

dMms

dl
zcM2

mszc{1Vm~0 , (92)

dMmr

dl
{cM2

mr{c{1Vm~0 . (93)

The quantityVm is the 2|2 matrix of second partial derivatives
L2c/LqiLqj of the wave speed at the point s¦î¦r along the
central ray. The two eqs (92)^(93) can be combined to obtain

d
dl

det (MmszMmr)zc tr (Mms{Mmr) det (MmszMmr)~0 , (94)

where det and tr denote the determinant and trace, respectively.
Since eq. (94) is independent of the wave-speed derivatives Vm,
it can be integrated analytically,

[ ln det (MmszMmr)]l
00
l0 ~{

�l00
l0

c(trMms{trMmr) dl , (95)

at any two points s¦î0¦î00¦r at consecutive distances
0¦l0¦l00¦L along the ray. The geometrical spreading factors
Rms and Rmr likewise satisfy a pair of forward and backward
di¡erential equations (Cí ervenÿ & Hron 1980; Cí ervenÿ 1985):

dRms

dl
~

1
2
c(trMms)Rms , (96)

dRmr

dl
~{

1
2
c(trMmr)Rmr . (97)

Upon integrating these relations and adding, we obtain

[ ln (RmsRmr)2]l
00
l0 ~

�l00
l0

c(trMms{trMmr) dl : (98)

The right sides of eqs (95) and (98) are identical except for the
sign; hence,

[ ln (RmsRmr)2]l
00
l0 ~[ ln det (MmszMmr)]l

0
l00 , (99)

or, equivalently,

Rm00sRm00r

Rm0sRm0r
~

det (Mm0szMm0r)
det (Mm00szMm00r)

���� ����1=2 (100)

for any two points s¦î0¦î00¦r. The proportionality
relation (100) stipulates that the two quantities RmsRmr and

jdet (MmszMmr)j1=2 vary inversely along a ray:

1
RmsRmr

~constant|
����������������������������������
det (MmszMmr)j j

p
. (101)

The limiting values of the spreading factors Rms, Rmr and the
determinants detMms, detMmr at the endpoints î?s and î?r
are

Rms?l and detMms?c{2
s l{2 as l?0 , (102)

Rmr?L{l and detMmr?c{2
r (L{l){2 as l?L . (103)

Upon using (102)^(103) together with the spreading-factor
symmetry csRrs~crRsr to evaluate the constant in eq. (101),
we obtain the desired relation:

Rrs

crRmsRmr
~

����������������������������������
det (MmszMmr)j j

p
. (104)

All four of the quantities Mms, Mmr and Rms, Rmr can exhibit
jump discontinuities at the boundaries &; the jumps in the
left and right sides of (104) are, however, always identical, so
that the equality remains valid regardless of the number of
re£ections, transmissions or conversions along a ray.
There is also a relation between the Maslov index di¡erence

MmszMmr{Mrs and the signature, or number of positive
eigenvalues minus the number of negative eigenvalues, of the
matrixMmszMmr. SinceMmszMmr{Mrs changes by 1, whereas
sig (MmszMmr) changes by 2 upon every passage through a
caustic, and since the limiting values of these quantities at the
two endpoints î?s and î?r are zero and 2, respectively, we
must have

MmszMmr{Mrs~
1
2
[sig (MmszMmr){2] . (105)

Eq. (105) is also valid regardless of the number or type of
boundary interactions experienced by a wave.

6.5 Paraxial kernel

Eqs (84)^(86), (89)^(91) and (104)^(105) constitute all of the
ingredients needed to compute the traveltime Frëchet kernel
(78) in the paraxial approximation. Once again, we shall
express the result using a streamlined notation, in which the
subscripts referring to s, r and î are eliminated. Speci¢cally, we
now identify the forward and backward paths along the central
ray by a prime and a double prime, respectively, writing

M0~Mms , M00~Mmr . (106)

The forward-scattering conditions (85)^(86) stipulate that
a traveltime perturbation in the paraxial approximation is
sensitive only to the speed of the propagating waves; that is, the
threefold dependence upon da, db and do in (77) is replaced by

dT~

���
+

K(dc/c) d3x: (107)

The Frëchet kernel K(x)~K(q1, q2, l) in (107) can be expressed
entirely in terms of the Hessians (106) in the form

K~{
1
2nc

�������������������������������
det (M0zM00�j j

q �?
0

u3j _m(u)j2 sin' du�?
0

u2j _m(u)j2 du
, (108)
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where

'~
1
2

uqT . (M0zM00) . q{[sig (M0zM00){2]n/4 . (109)

The paraxial kernel of a di¡erential traveltime measurement
d(*T )~d(TB{TA) is obviously the di¡erence of the individual
paraxial kernels:

KB{A~KB{KA if MA~MB . (110)

For any compound ray such as PP, SS, PcP or ScS, there may
be more than perpendicular projection point î for scatterers x
situated near the re£ecting boundary; in that case, the result
(108) must be replaced by a sum over all such points î~(0, 0, l).
It is immaterial in the context of the present approximation
whether the leading factor c~

��������
c0c00
p

in (108) is evaluated at the
scatterer x or at î; we adopt the former alternative, setting
c~c(q1, q2, l), since our numerical comparisons in Banana^
Doughnut II show that this choice leads to a slight improve-
ment in the agreement with the `exact' ray-theoretical kernel
(78).

6.6 Summary of the computational procedure

To conclude this section, we outline the steps needed to
compute a paraxial kernel K , for comparison with the `exact'
ray-theoretical algorithm outlined in Section 5.3.

(1) Trace the geometrical ray corresponding to the phase of
interest from the source s to the receiver r.
(2) Specify the position of every potential scattering point in

ray-centred coordinates, x~(q1, q2, l).
(3) Compute the forward and backward traveltime Hessians

M0 and M00 at every point î~(0, 0, l) along the central ray.
(4) Evaluate the kernel (108)^(109), allowing for multiple

projections of x~(q1, q2, l) onto î~(0, 0, l) if necessary.

Only a single numerically intensive two-point ray trace is
requiredöfrom the source s to the receiver r. Once this
central ray has been determined, the Hessians M0 and M00 can
be found with a few additional one-time integrations.We give a
detailed algorithm for computing M0 and M00 in a spherically
symmetric earth in Appendix A. Among other things, we show
there how to account for the jumps in these quantities at the
boundaries &.

7 REDUCTION TO RAY THEORY

The Jacobian of the transformation from (x1, x2, x3) to ray-
centred coordinates (q1, q2, l) is 1zqiLic (Cí ervenÿ & Hron
1980; Cí ervenÿ 1985).Written out explicitly, the 3-D integral in
eq. (107) is therefore

dT~{
1
2n

�L
0
dl
��?

{?
dq1 dq2 (1zqiLic) c{2dc

|

�������������������������������
det (M0zM00)j j

q �?
0

u3j _m(u)j2 sin' du�?
0

u2j _m(u)j2 du

2664
3775 . (111)

The limits +? on the transverse integrals over q1, q2 are
purely formal; in practice, the kernel K is negligible except
within the ¢rst few Fresnel zones about the central ray. If
the dominant frequency �u in the source-time power spectrum

j _m(u)j2 is su¤ciently high, or, equivalently, the lateral scale
length of the wave-speed heterogeneity is su¤ciently great, we
can replace the quantity (1zqiLic) c{2dc on the top line of (111)
by its value c(0, 0, l){2dc(0, 0, l) on the central ray. The order
of q1, q2 and u integration may then be interchanged, with the
result

dT~{

�L
0
dl c(0, 0, l){2dc(0, 0, l)

|

�?
0

u3j _m(u)j2
������������������������������
det (M0zM00)j j

q ��?
{?

sin' dq1 dq2 du

2n
�?
0

u2j _m(u)j2 du

2664
3775.

(112)

The quantity in brackets is unity, by virtue of the Gaussian
integral identity��?

{?
sin' dq1 dq2~

2n

u
������������������������������
det (M0zM00)j j

p . (113)

The traveltime perturbation (111) therefore reduces in this
stationary-phase approximation to

dT~{

�L
0
c(0, 0, l){2dc(0, 0, l) dl . (114)

This is, of course, precisely the ¢rst-order traveltime shift
predicted by geometrical ray theory:

dTray~{

�r
s
c{2dc dl . (115)

Fermat's principle guarantees that the change in the traveltime
due to the change in the ray path between a ¢xed source s and
receiver r is of second order in dc; this allows the ¢rst-order
perturbation of (9) to be calculated by integrating along the
unperturbed ray. The reduction of eqs (77)^(78) and (107)^(109)
to linearized ray theory (115) in the limit �u?? is no surprise,
inasmuch as Coates & Chapman (1990) have previously used
(113) to show that the Born moment tensor response (45)^(46)
is consistent with ray theory in the same approximation.

8 OVERLAPPING PHASES

There are numerous instances in which there may be more than
one geometrical phase arriving within the cross-correlation
time window t1¦t¦t2. In the case of a shallow-focus source,
for example, the waveforms of the `direct' P and S arrivals may
be contaminated by a superposition of later-arriving phases
such as pP, sP and sS, pS. The pulse shapes of PP and SS
may likewise be in£uenced by interference from precursory
phases such as the sub-Mohorovic ic̈ re£ections PmP and SmS.
We extend our analysis to ¢nd 3-D Frëchet kernels for such
interfering or overlapping phases in this section.

8.1 Two-phase interference

Suppose ¢rst that the unperturbed frequency-domain response
during the time interval of interest t1¦t¦t2 is a superposition
of two interfering phases:

s(u)~s1(u)zs2(u) . (116)
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Each of the two signals sj(u), j~1, 2 in (116) has a JWKB
representation of the form

sj(u)~
1
4n

[AjR
{1
j _m(u) exp i({uTjzMjn/2)] , (117)

where we have abbreviated

Aj~"j�j%j (118)

for simplicity in what follows. The perturbed response ds(u)
is regarded as a double sum (55) over all possible rays0 and
rays00, including concatenations of the same `type' as the two
unscattered source-to-receiver paths, ray1 and ray2. To ¢nd the
Frëchet kernel governing such a pair of overlapping phases, we
insert (116)^(117) and (55) into eq. (66), and systematically
make use of the full panoply of forward-scattering and paraxial
approximations, as before. We spare the reader the details of
this calculation, and simply give the ¢nal result, which may be
most conveniently expressed using the condensed notation

*Tj~
1
2
qT . (M0jzM00j ) . q , (119)

*Mj~
1
2
[sig (M0jzM00j ){2] , (120)

where M01, M
00
1 and M02, M

00
2 are the forward and backward

Hessians along ray1 and ray2, respectively. The kernel K in the
representation (107) of dT is replaced by

K1z2~{
1

2ncD

�?
0

u3j _m(u)j2

|[A2
1R

{2
1

��������������������������������
jdet (M01zM001)j

q
sin'11

zA1A2R
{1
1 R{1

2

��������������������������������
jdet (M01zM001)j

q
sin'12

zA2A1R
{1
2 R{1

1

��������������������������������
jdet (M02zM002)j

q
sin'21

zA2
2R

{2
2

��������������������������������
jdet (M02zM002)j

q
sin'22] du , (121)

where

'11~u *T1{(*M1)n/2 , (122)

'12~u(*T1zT1{T2){(*M1zM1{M2)n/2 , (123)

'21~u(*T2zT2{T1){(*M2zM2{M1)n/2 , (124)

'22~u *T2{(*M2)n/2 (125)

and

D~

�?
0

u2j _m(u)j2fA2
1R

{2
1 zA2

2R
{2
2 z2A1A2

|R{1
1 R{1

2 cos [u(T1{T2){(M1{M2)n/2]g du . (126)

The four terms in (121) and (122)^(125) account for the e¡ects
of type-1 and type-2 scattered waves upon the unperturbed
pulses s1(t) and s2(t), respectively.

8.2 Multiple-phase interference

It is a straightforward matter to generalize the above result to a
signal consisting of more than two overlapping phases,

s(u)~s1(u)zs2(u)z � � � , (127)

each of the form (117). The Frëchet kernel relating the cross-
correlation traveltime shift dT to the fractional wave-speed
perturbation dc/c in that case is

K&~{
1

2ncD

�?
0

u3j _m(u)j2

|
X
j

X
k

AjAkR
{1
j R{1

k

�������������������������������
jdet (M0jzM00j )j

q
| sin [u(*TjzTj{Tk){(*MjzMj{Mk)n/2] du , (128)

where

D~

�?
0

u2j _m(u)j2
X
j

X
k

AjAkR
{1
j R{1

k

| cos [u(Tj{Tk){(Mj{Mk)n/2] du . (129)

The subscript & in (128) serves as a reminder that this is the
kernel for a superposition of interfering phases j~1, 2, . . . .
The ray paths followed by the phases in both (121)^(126)
and (128)^(129) are presumed to be adjacent, so that slight
di¡erences in the attenuation times T1

1, T2
1, . . . can be ignored.

8.3 Limiting cases

Suppose that all of the phases in (127) have the same pulse
shape,Mj~Mk, and are well separated in the time domain, i.e.

�ujTj{Tkj&1 for j=k . (130)

The oscillatory cross-terms are then negligible as a result of
destructive interference between adjacent frequencies u and
uzdu, so that (128)^(129) reduces to

K&~
X
j

A2
j R

{2
jX

k

A2
kR

{2
k

0BB@
1CCAKj . (131)

The multiphase kernel K& in this approximation is a sum of
individual kernels Kj, each weighted by the relative (amplitude)2

of the associated far-¢eld pulse. This makes intuitive sense,
since what one is then measuring is an average traveltime shift
dT of a number of distinct arrivals in a (presumably long) time
interval t1¦t¦t2. Strong pulses will obviously have a greater
in£uence upon this average traveltime than weak ones. The
condition (130) prevails, for example, for the direct and depth
phases S and sS, whenever the source is deep enough for these
two arrivals to be isolated in the seismogram. The kernel (131)
for such a deep-source traveltime shift dTSzsS is

KSzsS~
A2

SR
{2
S

A2
SR

{2
S zA2

sSR
{2
sS

 !
KS

z
A2

sSR
{2
sS

A2
SR

{2
S zA2

sSR
{2
sS

 !
KsS . (132)

In practice, of course, one would never measure a single
average traveltime for two such well-separated phases; instead,
one would window the two phases separately, and measure the
individual time shifts dTS and dTsS.
In the opposite limit of a surface focus source, the phases

S and sS arrive simultaneously: TS~TsS . A common factor
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of A2
SR

{2
S zA2

sSR
{2
sS z2ASAsSR

{1
S R{1

sS in the numerator and
denominator of (121) then cancels, so that the kernel for
dTSzsS reduces to

KSzsS~KS~KsS . (133)

In other words, the kernel for the simultaneously arriving S
and sS phases is identical to that for either of the two phases
considered individually. This too is in accord with elementary
physical intuition.

9 CONCLUSIONS

The most important results in this paper are eqs (108) and (110),
giving the paraxial Frëchet kernelsK for an absolute traveltime
measurement dT and a di¡erential traveltime measurement
d(*T ), respectively. The kernel (108) for a single, well-
isolated seismic phase depends only upon the sum M0zM00 of
forward and backward traveltime Hessians along the central
geometrical ray. Forward Rayleigh scattering, wave-front
healing and other di¡raction e¡ects give rise to a frequency-
dependent o¡-path dependence proportional to the quantity
sinf12uqT . (M0zM00) . q{[sig (M0zM00){2]n/4g, where q is
the perpendicular distance of a scatterer x from the ray. The
Frëchet kernel for a di¡erential traveltimemeasurement d(*T )~
d(TB{TA) of two `identical-pulse-shape' phases is simply the
di¡erence of the single-phase kernels: KB{A~KB{KA. These
results provide a natural extension of linearized geometrical
ray theory to ¢nite-frequency waves. The frequency content
of the cross-correlated pulse is explicitly accounted for by
the presence of the source time power spectrum j _m(u)j2 in the
representation (108) of a single-phase kernel. Destructive
interference among adjacent frequencies u and uzdu con-
¢nes the strong sensitivity to the vicinity of the ¢rst Fresnel
zone surrounding the central ray. The Frëchet kernel of very
high-frequency waves is a very slender hollow banana; lower-
frequency waves are, on the other hand, sensitive to wave-
speed heterogeneity dc/c farther o¡ the ray. To quantify these
remarks, we present a number of illustrative examples of both
absolute and di¡erential traveltime Frëchet kernels in the
paper that follows, Banana^Doughnut II.

ACKNOWLEDGMENTS

The possibility that adjacent-path interfering phases might
a¡ect the cross-correlation traveltimes of P, S and PP, SS
waves was pointed out to us by Li Zhao. Financial support for
this work has been provided by the US National Science
Foundation under Grants EAR-9505677 and EAR-9725496.

REFERENCES

Brune, J.N., Nafe, J.E. & Alsop, L.E., 1961. The polar phase shift of
surface waves on a sphere, Bull. seism. Soc. Am., 51, 247^257.
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APPENDIX A: SPHERICAL EARTH
KERNELS

Consider a spherically symmetric earth model of radius a, with
a prescribed radial variation in wave speed c(r).We assume that
c(r) is smooth everywhere within 0¦r¦a, except for jump
discontinuities at a number of internal solid^solid interfaces
r~dSS and £uid^solid interfaces r~dFS. We denote the union
of all discontinuities, including the outer free surface r~a,
by d~a|dSS|dFS. The spherical polar coordinates of an
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arbitrary point within the Earth will be denoted by x~(r, h, �),
where h is the colatitude and � is the longitude, as usual. We
describe a practical and economical algorithm for computing
the paraxial Frëchet kernel K of an arbitrary phase within such
a piecewise smooth, spherical earth model in this Appendix.

A1 Kinematic ray tracing

Seismic rays within a spherical earth model are con¢ned to the
source^receiver great-circle plane. Kinematic ray tracing is
most readily performed using a rotated coordinate system, in
which the source and receiver are situated upon the equator, at
points

s~(rs, n/2, 0) , r~(a, n/2, *) . (A1)

The quantity h~a{rs is the source depth, and * is the angular
epicentral distance, as illustrated in Fig. A1. The receiver is
assumed to be situated on the earth's surface, rr~a, since that
is the only case of practical interest in global seismology. The
incidence angle 0¦i¦n is measured downwards from the
local vertical rª , so that the unit wave vector along either a
downgoing or upgoing leg of a ray is given by

kê ~rª cos izwê sin i : (A2)

The SV and SH polarization vectors are chosen to point
upwards and to the right of an eastward-propagating wave:

qª 1~qª SV~rª sin i{wê cos i , qª 2~qª SH~èê . (A3)

With this choice, the SV, SH, P polarization triad is
right-handed, (qª 1|qª 2) . kê ~(qª SV|qª SH ) . kê ~1, as shown.
The three quantities r, i and c all vary as we move from one

point to another; however, as is well known, the ray parameter

p~
r sin i
c

(A4)

has the same value everywhere along a geometrical ray. The
path r, � of a ray in the equatorial plane h~n/2 may be
determined by integrating the three ¢rst-order di¡erential
equations (Dahlen & Tromp 1998, Section 15.1.2)

dr
dl

~ cos i ,
d�
dl

~r{1 sin i ,
di
dl

~pr{1( _c{c/r) , (A5)

where the dot denotes the radial derivative, _c~dc/dr. The
independent variable, which is the arclength l along the ray,
may be eliminated from (A5), leading to a pair of coupled
equations,

dr
d�

~r cot i ,
di
d�

~r _c/c{1 : (A6)

Wherever a ray intersects an interface r~d, the di¡erential
equations (A6) must be supplemented by the continuity
conditions

[r]z{~0 , [c{1 sin i ]z{~0 . (A7)

The jump notation [ . ]z{ throughout this Appendix has a
slightly di¡erent meaning than elsewhere in the paper: the
signs z and { refer to the outgoing and incoming ray paths,
respectively. In the case of a transmitted wave such as PKP or
SKS, the outgoing and incoming rays are on opposite sides of
the boundary, whereas in the case of a re£ection such as PP,
SS, PcP or ScS, they are on the same side. Even in the latter

case, the wave speeds c+ need not be the same on the two legs
of a converted phase such as PS, SP, PcS or ScP. The ¢rst
of the two continuity conditions (A7) simply states that the
boundary is immobile, whereas the second is Snell's law.
To trace or `shoot' a ray from the source s, we integrate (A6)

subject to the boundary conditions (A7) on r~d and the initial
conditions

r(0)~rs , i(0)~is . (A8)

Iteration is required to ¢nd the initial take-o¡ angle is at the
source that enables the ray to `hit' the receiver r; the ¢nal
condition is that the ray must arrive at the surface of the earth
after having travelled exactly the speci¢ed epicentral distance,
i.e.

r(*)~a . (A9)

Figure A1. (Top) Kinematic and dynamic ray tracing in a spherically
symmetric earth is conducted using a rotated coordinate system, with
the source s and receiver r situated upon the equator, at longitudes �~0
and �~*, respectively. Rays are con¢ned to the equatorial plane,
h~n/2. (Bottom) Cross-section of the ray plane, showing the P-wave
polarization, or unit wave vector, kê , and the vertical and horizontal
S-wave polarizations qª SV and qª SH . The position of an arbitrary point
along the ray is completely speci¢ed in terms of the local radius r and
longitude 0¦�¦*. The angle of incidence i is in the range n§i§n/2
on every downgoing leg and n/2§i§0 on every upgoing leg of a simple
or compound ray.
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Any standard root-¢nding procedure can be used to solve this
two-point ray-tracing problem. By using � rather than l as the
independent variable, we restrict the search to one rather than
two dimensions.

A2 Dynamic ray tracing

The only remaining ingredients needed to compute the paraxial
Frëchet kernel (107)^(108) are the forward and backward
Hessian matrices M0 and M00. In a spherically symmetric earth
model, these matrices are diagonal:

M0~
M0

1 0

0 M0
2

 !
, M00~

M00
1 0

0 M00
2

 !
. (A10)

Here, as elsewhere in this paper, M0 and M00 are expressed in
ray-centred coordinates; the di¡erence (91) in traveltime from
the source s~(0, 0, 0) to the receiver r~(0, 0, L), along a path
passing through a scatterer x~(q1, q2, l) or through the nearest
point on the central ray î~(0, 0, l), is given by

T 0zT 00{T~
1
2
(M0

1zM00
1 )q

2
1z

1
2
(M0

2zM00
2 )q

2
2 . (A11)

Once the central kinematic ray has been determined, the four
quantities M0

1, M
0
2 and M00

1 , M
00
2 can be computed with a few

additional initial-value integrations. We focus ¢rst upon the
Hessian M0 measured from the source s, rewriting it as

M~
M1 0

0 M2

 !
, (A12)

where the primes have been dropped for simplicity.
As discussed in the body of the paper,M satis¢es the forward

Ricatti equation,

dM
dl

zcM2zc{2V~0 . (A13)

The wave-speed second-derivative matrix V in spherical polar
coordinates is V~�crª rª zr{1 _c(èê èê zwê wê ), so that in ray-centred
coordinates it is

V~
�c sin2 izr{1 _c cos2 i 0

0 r{1 _c

 !
. (A14)

Eq. (A13) must be solved subject to the point-source initial
condition at î?s:

M?csl{1I as l?0 , (A15)

where I is the 2|2 identity.
In addition, M must satisfy a condition guaranteeing that

wave fronts in the vicinity of the central ray are continuous
across boundaries. Upon specializing the analysis of Cí ervenÿ
& Hron (1980) and Cí ervenÿ (1985) to the case of a spherically
symmetric earth, we obtain the requisite boundary condition,
analogous to (A7),

[RT .M .R{c{1 cos iDzE�z{~0 . (A16)

All three matrices RT .M .R, D and E in eq. (A16) are
expressed in h, � coordinates, that is, on the boundary r~d.

The orthogonal matrix

R~
{ cos i 0

0 1

 !
~RT (A17)

transforms the ray-centred Hessian M to these boundary
coordinates:

RT .M .R~
M1 cos2 i 0

0 M2

 !
. (A18)

The matrices D and E account for the curvature and the
gradient in wave speed _c+ on the outgoing and incoming sides
of the boundary, respectively. The ¢rst is simply the boundary
curvature matrix D~r{1(èê èê zwê wê ), or, equivalently,

D~r{1
1 0

0 1

 !
, (A19)

whereas the second is given by

E~c{2 _c cos i sin2 i
1 0

0 0

 !
. (A20)

Upon substituting (A12) and (A14) we can write (A13) as a
pair of uncoupled scalar equations:

dM1

d�
zp{1r2M2

1zpc{1(�czr{1 _c cot2 i)~0 , (A21)

dM2

d�
zp{1r2M2

2zp{1rc{3 _c~0 , (A22)

where we have used (A4) and the second of eqs (A5)
to transform the independent variable from the arclength l to
the longitude �, for consistency with (A6). We must solve
(A21)^(22), together with the jump conditions

[M1 cos2 i{r{1c{1 cos izc{2 _c cos i, sin2 i]z{~0 , (A23)

[M2{r{1c{1 cos i]z{~0 (A24)

on the boundaries r~d, subject to the initial conditions

M1, M2?csl{1 as l?0 (A25)

at the source î?s. The two components M1, M2 govern the
geometrical spreading within the equatorial ray plane and
perpendicular to the ray plane, respectively. The diagonal
character of the various matrices M, V, R, D and E renders
these two spreading directions independent in a spherically
symmetric earth.

A3 Numerical integration

Direct numerical integration of eqs (A21)^(A24) is impractical
because of the divergent character of the initial conditions
(A25). A convenient computational scheme can be based upon
the decomposition (Cí ervenÿ 1985)

M~P .Q{1 . (A26)

This reduces the Ricatti equation (A13) to a pair of coupled
¢rst-order linear equations:

dP
dl

~{c{2V .Q ,
dQ
dl

~cP . (A27)
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In a spherically symmetric earth, both matrices in (A26) are
diagonal:

P~
P1 0

0 P2

 !
, Q~

Q1 0

0 Q2

 !
. (A28)

The elements of M, P and Q are simply related by

M1~P1/Q1 , M2~P2/Q2 . (A29)

The governing equations (A27) are likewise equivalent to the
quartet of scalar relations

dP1

d�
~{pc{1(�czr{1 _c cot2 i)Q1 ,

dQ1

d�
~p{1r2P1 , (A30)

dP2

d�
~{p{1rc{3 _cQ2 ,

dQ2

d�
~p{1r2P2 , (A31)

where we have again used (A4) and the second of eqs (A5) to
change the independent variable from l to �, as in (A21)^(A22).
The jump conditions on P1, P2, Q1, Q2 equivalent to (23)^(A24)
are

[cos i P1z( p2r{2 _c{r{1c{1)Q1]z{~0 , (A32)

[P2{r{1c{1 cos i Q2]z{~0 , (A33)

[Q1/cos i]z{~[Q2]z{~0 . (A34)

Eqs (A30)^(A31) and (A32)^(A34) must be solved subject to
the initial conditions P(0)~I and Q(0)~0 at the source s, i.e.

P1(0)~P2(0)~1 , Q1(0)~Q2(0)~0 . (A35)

A4 Symplectic symmetry

The backward Hessian M00 may be found by means of an
analogous algorithm based upon integration of the Ricatti
equation (93) from the receiver r to the source s. Alternatively,
we may compute M00 without any backward integration by
exploiting the symplectic symmetry of the dynamic ray-tracing
equations (Cí ervenÿ 1985;Dahlen&Tromp1998, Section15.4.10).
To this end, we introduce the 4|4 propagator associated with
the di¡erential system (A27):

ð~

~Q1 0 Q1 0

0 ~Q2 0 Q2

~P1 0 P1 0

0 ~P2 0 P2

0BBBB@
1CCCCA . (A36)

The quantities ~P1, ~P2 and ~Q1, ~Q2 satisfy the same ¢rst-
order di¡erential equations (A30)^(A31) and jump conditions
(A32)^(A34) as P1, P2 and Q1, Q2; only the initial conditions
(A35) are di¡erent:

~P1(0)~ ~P2(0)~0 , ~Q1(0)~ ~Q2(0)~1 . (A37)

The conditions (A37) guarantee that the matrix (A36) is a
propagator, satisfying

ð(0, 0)~I . (A38)

The standard concatenation and reversal properties of a
propagator stipulate that

ð(*, �)~ð(*, 0) . ð(0, �) , (A39)

ð(�, *)~ð{1(*, �) . (A40)

Upon combining (A39)^(A40) we obtain a representation of
the sought-after propagator from the receiver in terms of the
propagator from the source and its inverse:

ð(�, *)~ð(�, 0) . ð{1(*, 0) . (A41)

The symplectic property of the propagator enables us to express
the inverse in (A41) explicitly in the form (Cí ervenÿ 1985)

ð{1~

P1 0 {Q1 0

0 P2 0 {Q2

{ ~P1 0 ~Q1 0

0 { ~P2 0 ~Q2

0BBBBB@

1CCCCCA . (A42)

At every point 0¦�¦* between the source s and the receiver r,
we de¢ne

P3(�)~P1(�) ~Q1(*){ ~P1(�)Q1(*) , (A43)

Q3(�)~ ~Q1(�)Q1(*){Q1(�) ~Q1(*) , (A44)

P4(�)~P2(�) ~Q2(*){ ~P2(�)Q2(*) , (A45)

Q4(�)~ ~Q2(�)Q2(*){Q2(�) ~Q2(*) . (A46)

A5 Forward and backward Hessians

The forward and backward Hessian matrices M0~Mms and
M00~Mmr are given in terms of the propagator (A36) and the
four quantities (A43)^(A46) by

M0~
P1/Q1 0

0 P2/Q2

 !
, (A47)

M00~
P3/Q3 0

0 P4/Q4

 !
. (A48)

A total of four forward 2|2 integrations are needed to
¢nd fP1, Q1g, fP2, Q2g, f ~P1, ~Q1g, f ~P2, ~Q2g, and therefore the
quantities fP3, Q3g, fP4, Q4g, everywhere along the central ray
s¦î¦r. In each of the four cases, we integrate eqs (A30)^(A31),
starting with the initial conditions (A35) or (A37) at the source
�~0, using a Runge^Kutta or analogous forward-stepping
scheme. Upon intersecting the ¢rst boundary r~d, we use
(A32)^(A34) to step across, continue integrating to the next
boundary, and so on, until arriving at the receiver �~*.

A6 Analytical results

The numerical algorithm described above su¤ces to determine
both M0 and M00. However, we can go a long way towards
¢nding these quantities entirely analytically. In particular, the
factors P2, Q2 and M2 governing spreading perpendicular to
the ray plane are given explicitly by

P2~p{1c{1rs sin (iz�) , Q2~p{1rrs sin� , (A49)

M2~
sin (iz�)
cr sin�

. (A50)

It is readily veri¢ed that (A49)^(A50) satisfy all of the
di¡erential equations and jump and initial conditions (A22),
(A24), (A25), (A31), (A33), (A34) and (A35). Spreading
perpendicular to the ray plane is controlled primarily by the
sphericity of the earth, so it is no surprise that it has such
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a simple analytical description. The divergence of M2 at
�~n, 2n, . . . is indicative of the presence of a caustic along the
straight line passing through the source s and its antipode. The
n/2 phase shift produced by a passage through this caustic is
the body wave analogue of the so-called polar phase shift of
a surface wave (Brune et al. 1961; Dahlen & Tromp 1998,
Section 11.4 and last paragraph of Section 12.5.1). The factors
analogous to (A49)^(A50) along the backward ray from the
receiver r to the source s are obtained by substituting rs?rr,
�?*{� and i?n{i. In particular, the forward-plus-backward
sum M0

2zM00
2 is given by the simple expression

M0
2zM00

2~
pr{2 sin*

sin� sin (*{�)
. (A51)

It is noteworthy that (A51) is continuous everywhere along the
source^receiver ray:

[M0
2zM00

2 ]
z
{~0 . (A52)

It is also evident that M0
2zM00

2 will be symmetric with respect
to the source and receiver if and only if s and r are situated at
the same depth, rs~rr.
The equations (A21), (A23), (A25), (A30), (A32), (A34)

and (A35) governing the in-plane spreading factors P1, Q1 and
M1 cannot likewise be solved entirely analytically. There is,
however, a conserved quantity, or readily determined integral
of the in-plane motion; it is easily veri¢ed that the combination

r cos i P1z( p2r{1 _c{c{1)Q1~rs cos is (A53)

is everywhere constant along a ray. The forward-plus-backward
sum M0

1zM00
1 exhibits a discontinuity at every boundary

intersection point r~d ; there is, nevertheless, an analogue of
the out-of-plane jump condition (A52):

[cos2 i (M0
1zM00

1 )]
z
{~0 . (A54)

All of the results (A49)^(A54) can be used to provide a check
upon the accuracy of the numerical integration procedure.

A7 Geometrical spreading factors

The individual spreading factors R~Rrs, R0~Rms and
R00~Rmr are not required to compute the paraxial kernel
(108). However, they are a by-product of the above dynamical
ray-tracing procedure; in fact (Cí ervenÿ 1985),

R~c{1
s

���������������������������
jQ1(*)Q2(*)j

p
, (A55)

R0~c{1
s

��������������������������
jQ1(�)Q2(�)j

p
, (A56)

R00~c{1
r

��������������������������
jQ3(�)Q4(�)j

p
. (A57)

The results (A55)^(A57) provide an alternative means of
computing the ratio (104):

R

crR0R00
~

�������������������������������
jdet (M0zM00)j

q
. (A58)

Eqs (A52) and (A54) can be combined to yield the jump-condition
analogue of the di¡erential equation (94):

[cos2 i det (M0zM00)]z{~0 . (A59)

It is noteworthy that the dependence (A16) of the one-way
jumps [M0]z{ and [M00]z{ upon the boundary-curvature and
wave-speed-gradient matrices D and E has been eliminated. The
forward and backward spreading factors satisfy the continuity
conditions (Dahlen & Tromp 1998, Section 12.1.7)

[R0/
�������������
j cos ij

p
]z{~[R00/

�������������
j cos ij

p
]z{~0 . (A60)

The geometrical factors 1/
�������������j cos ijp

in (A60) account for the
change in ray-tube area upon re£ection, transmission or con-
version. The left and right sides of (A58) su¡er equal jumps at
every boundary, inasmuch as

R

crR0zR00z
~
j cos i{j
j cos izj

R

crR0{R00{
, (A61)

�����������������������������������
jdet (M0zzM00z)j

q
~
j cos i{j
j cos izj

�����������������������������������
jdet (M0{zM00{)j

q
. (A62)
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