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ABSTRACT
Upwelling hot mantle plumes are thought to disintegrate continental lithosphere and are 

considered to be drivers of active continental breakup. The formation of the Walvis Ridge dur-
ing the opening of the South Atlantic is related to a putative plume-induced breakup. We inves-
tigated the crustal structure of the Walvis Ridge (southeast Atlantic Ocean) at its intersection 
with the continental margin and searched for anomalies related to the possible plume head. The 
overall structure we identify suggests that no broad plume head existed during opening of the 
South Atlantic and anomalous mantle melting occurred only locally. We therefore question the 
importance of a plume head as a driver of continental breakup and further speculate that the 
hotspot was present before the rifting, leaving a track of kimberlites in the African craton.

INTRODUCTION
The processes of lithospheric weakening 

that finally allow continents to break are still 
poorly understood and geophysical data con-
straints are sparse. Various ideas exist about the 
underlying mechanisms that cause continental 
breakup, ranging from changing plate bound-
ary forces to mantle dynamics. A much-debated 
model involves the arrival of a deep mantle 
plume (e.g., Storey, 1995). Mantle plumes are 
deep-seated thermal anomalies carrying hot and 
buoyant material from the core-mantle bound-
ary to the lithosphere-asthenosphere boundary 
(LAB). The LAB forms a rheological barrier 
to the plume’s further ascent, and so the man-
tle material spreads out as a large disk (e.g., 
Griffiths and Campbell, 1991). In the original 
model, Morgan (1971) postulated that regional 
uplift and stress induced by thermal doming 
cracked the continents and pushed them apart. 
More recent simulations show that plumes also 
have the potential to thermally and chemically 
erode the base of the lithosphere (Sobolev et al., 
2011) and promote the accumulation of melt 
that further exacerbates lithospheric weaken-
ing. This melt intrudes the crust, partly accu-
mulates at the crust-mantle boundary (Moho), 
which can be mapped by seismic methods, and 
partly erupts at the surface as large flood basalt 
provinces (e.g., Ridley and Richards, 2010). 
The formation of flood basalt provinces is often 
in close spatial and temporal proximity to con-
tinental breakup, which has led to the contro-
versial concept that the impact of plume heads 
arriving at the base of the lithosphere initiates 
continental breakup (e.g., Cande and Steg-
man, 2011). However, this model is only one 

possible end member, and global observations 
from continental margins with and without 
flood basalt provinces suggest a very different 
explanation: i.e., preexisting weak zones and a 
prior history of rifting in combination with gen-
eral plate movements might be more important 
factors for breakup (e.g., Armitage et al., 2010; 
Buiter and Torsvik, 2014).

Here we use seismic refraction data to image 
the crustal structure associated with a hotspot 
track and the proposed site of the Tristan plume 
head impact (Duncan, 1984), the easternmost 
Walvis Ridge (southeast Atlantic Ocean), in-
cluding the junction with the Namibian coast 
(Fig. 1). The area is well covered by four mostly 
amphibious deep seismic sounding profiles. The 
data image 2490 km of crust and upper mantle 
along profiles varying in length from 470 to 730 
km. We used 166 ocean bottom stations, 99 land 
receivers, 12,864 airgun shots, and 13 dynamite 
shots. One profile is located along the ridge axis 
and continues onshore, and the other three cross 
the Walvis Ridge at different angles and loca-
tions. The traveltimes of refracted and reflected 
P-phases were used to derive two-dimensional 
velocity models using standard modeling pro-
cedures. Further details of the analysis and 

data examples are available in the GSA Data 
Repository1.

RESULTS
Our P-wave velocity models (Fig. 2) show 

that the edifice of the Walvis Ridge consists 
of closely spaced seamounts and up to 35-km-
thick crust. Crustal velocities of 5.5–7.2 km/s 
point to a gabbroic composition resembling 
thickened oceanic crust. The ridge is covered by 
extrusive rocks with velocities of 3.8–5.5 km/s, 
which we interpret as hyaloclastites and basalt 
lava flows. The transition from the Walvis Ridge 
to the adjacent basins reveals drastic differences 
between the northern and the southern flanks as 
well as along the axis of the ridge.

While the southern flank gradually converts 
into the continent ocean transition of the volca-
nic margin (Fig. 2B), the northern flank is char-
acterized by a sharp transition from 35-km-thick 
crust below the ridge to 5–6-km-thick oceanic 
crust in the Angola Basin (Figs. 2B and 2C). 
This strong lateral variation is limited to the area 
close to the continental margin. Further offshore 
(Fig. 2A) both flanks transfer smoothly into oce-
anic crust, but with some additional volcanism 
and thickened crust at the northern flank.

This surprising jump in crustal thickness on 
the Angola Basin side can be explained by the ki-
nematic evolution of the South Atlantic (Fig. 3). 
The Angola Basin is considerably younger than 
the Cape Basin (up to 20 Ma; Gee and Kent, 
2007; Shipboard Scientific Party, 1984), and the 

1 GSA Data Repository item 2015311, seismic 
data and model descriptions, is available online at 
www.geosociety.org/pubs/ft2015.htm, or on request 
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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Figure 1. Location of the 
deep crustal seismic pro
files at the Walvis Ridge, 
southeast Atlantic Ocean. 
Magnetic anomalies with 
the ages (Gee and Kent, 
2007): C34, 83.5 Ma; M0, 
120.6 Ma; M4, 125.7 Ma. 
Red square marks the 
dated Deep Sea Drilling 
Project Site 530 Leg 75 in 
the Angola Basin (Ship
board Scientific Party, 
1984).
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northern flank of the Walvis Ridge is defined by 
the Florianopolis Fracture Zone. The crust that 
formed initially to the north of the Walvis Ridge 
has likely been sheared along the Florianopo-
lis Fracture Zone and transferred to the South 
American margin as the Sao Paolo Plateau (Fig. 
3B). The younger and thinner crust found today 
in the Angola Basin was formed after the mag-
matic activity associated with the hotspot was 
located further westward (Fig. 3C). This implies 
that the plume tail did not supply sufficient addi-
tional melt to thicken the oceanic crust 200–600 
km away in the Angola Basin.

In the west-east direction along the axis of 
the Walvis Ridge the crustal thickness increases 
from 18 to 30 km toward the coast (Fig. 2D). 
The continental crust reaches 40 km thickness 
below the Kaoko fold belt. Further inland, we 
observe a slight decrease to 36 km and indica-
tions for an intrusive body at the edge of the 
model. This observed crustal root beneath the 
fold belt is consistent with the findings of pro-

file 2 (Fig. 2C), onshore seismological experi-
ments (Heit et al., 2015), and gravity models 
(Maystrenko et al., 2013). Close to the coast, the 
models show high seismic velocities (as high as 
7.5 km/s) in the lower crust of the Walvis Ridge. 
This high-velocity lower crustal body is partly 
constrained by reflections from the top and oth-
erwise defined by the 7.0 km/s contour line. The 
high-velocity lower crustal body tapers out ~300 
km offshore, much like others found along the 
southwestern African coast (Bauer et al., 2000; 
Hirsch et al., 2009; Schinkel, 2006). Compared 
to these models, where the high-velocity lower 
crustal bodies terminate 50 km offshore from 
the coast, the Walvis body continues a few tens 
of kilometers beneath the continental interior 
(Fig. 4). Independent onshore seismic profiles 
indicate that this eastern promontory of the Wal-
vis high-velocity lower crustal body is only 100 
km wide (Ryberg et al, 2015); this is consider-
ably narrower than further offshore at P3 (Fig. 
2B), where its width is almost equivalent to the 
bathymetric expression of the Walvis Ridge 
(160 km). Therefore, compared to the southern 
volcanic margin, the additional area of intrusive 
lower crust at the landfall of the Walvis Ridge is 
at most 100 × 100 km2 (Fig. 4, inset). Accord-
ing to our data, the continental crust including 
the root of the Kaoko fold belt has not been sig-
nificantly modified by the proposed plume head.

DISCUSSION
The intruded area around the Walvis Ridge 

is surprisingly small in comparison to the often-
cited diameters of plume heads, between 800 and 
2000 km based on the regional extent of flood 
basalt volcanism (White and McKenzie, 1989) 
and theoretical calculations (Tan et al., 2011). 
However, the exact location of the hotspot dur-
ing breakup is crucial for the interpretation of 
our results: a distant location could account for 
the relatively limited intruded area. The loca-
tion of the plume impact is not well constrained. 
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Figure 2. Pwave velocity models. A: P150 across the Walvis Ridge (WR) 600 km offshore. 
FFZ—Florianopolis Fracture Zone; VE—vertical exaggeration. B: P3 across WR 200 km off
shore. C: P2 across Angola Basin and WR with an angle of 45°. D: P100 along axis. All mod
els are plotted with the same scaling and a vertical exaggeration of 3. Major reflectors are 
marked with thick black lines. White model areas have no ray coverage and are not resolved. 
The 7.0 km/s contour line is emphasized in P100.

Figure 3. Reconstruction of the South Atlantic opening (PérezDíaz and Eagles, 2014). Large 
red circles in A mark the location of the plume head with 1000 km and 2000 km diameter, 
respectively (O’Connor and Duncan, 1990). Small red circles denote the location of the 
plume stem with a diameter of 200 km. Black lines indicate the reconstructed positions of 
profiles 2 and 3. Thin black lines in A show faults (Foster et al., 2009). Double line marks 
the spreading center. Yellow areas indicate continental flood basalts (Coffin et al., 2006). 
SPP—Sao Paolo Plateau.
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Some place it at the South America plate near 
the Paraná flood basalts (O’Connor and Dun-
can, 1990; VanDecar et al., 1995); others locate 
it at the African plate (Duncan, 1984; White and 
McKenzie, 1989). More recent findings indicate 
a position near Paraná, although this solution 
cannot be achieved with a fixed hotspot position 
(Ernesto et al., 2002). In this case, the Namib-
ian margin would have only been influenced by 
the outer ambit of the plume head and we would 
expect a different geometry for the affected area. 
The limited encroachment into African continen-
tal crust may be explained by greater distance 
from the center, but then it is reasonable to ex-
pect a much wider shape than the observed 100 
km resembling a large-diameter circle (Fig. 3A). 
Furthermore, the area of the intruded lower crust 
onshore, formed during impact of the proposed 
plume head, should be greater than offshore, 
because the latter was formed after the plume 
head had dissipated. It is thought provoking that 
we find the contrary, i.e., attenuated magmatism 
during continental breakup and increased mag-
matism during the formation of the easternmost 
portions of the Walvis Ridge. Instead, the con-
finement of intruded continental crust to a narrow 
strip in the landward prolongation of the Walvis 
Ridge seamount chain suggests a hotspot track 
origin and is not a signature of a plume head.

Our observations are inconsistent with a sig-
nificant impact of the Tristan plume as a driving 
force in the opening of the South Atlantic. The 
absence of a large plume head signature can be 
interpreted in terms of (1) the non-development 
of a head during plume ascent, or (2) the preex-
istence of a hotspot before the time of breakup. 
The development of headless plumes is at odds 
with current models of mantle dynamics and a 
different melt source for the flood basalt prov-
inces would be needed. Continental rifting can 
trigger significant partial melting if the ambient 
mantle temperature is 100–150 °C warmer than 

normal (Rey, 2015). Supercontinents in general 
might be underlain by increased temperatures 
(Coltice et al., 2009), and the Etendeka volca-
nics imply a mantle source (1490–1540 °C) that 
is warmer than normal (~1400 °C) but cooler 
than plume settings (Tp > 1550 °C; Hole, 2015). 
In such a case, only the plume tail would leave 
a hotspot track, but is otherwise not needed for 
the breakup process.

In the alternative scenario, a hotspot was 
already established a long time prior to the 
breakup, but its volcanic manifestation was sup-
pressed due to the thickness and strength of the 
African lithosphere. An indication for such a 
preexisting hotspot is the geometry of the con-
tinental high-velocity lower crustal body and its 
relation to continental fault systems. In Namibia, 
the northern Etendeka basalts are associated 
with deep-reaching coast-parallel faults (Foster 

et al., 2009) that extend well beyond the area of 
basalt outcrops and intruded lower crust. Even 
if the surface basalts were eroded, the geom-
etry of the intracrustal intrusions would remain 
unaltered. In the plume head scenario it is dif-
ficult to explain why only this localized crustal 
portion was affected, even though the faults are 
much longer and would have been completely 
underlain by the plume head (Fig. 3A). Despite 
the fact that the continental crust shows preex-
isting weak zones and was weakened by rifting, 
volcanism was suppressed. The hotspot-derived 
mantle melts had limited ability to actively im-
pinge the continental crust unless given an easy 
conduit to the surface, such as a major base-
ment-penetrating continental fault, an oceanic 
spreading center, or a fracture zone.

The presence of a well-established hotspot 
producing mantle melts prior to continental 
breakup implies that the Walvis Ridge hotspot 
track might extend onto the African continent. A 
recent seismological study revealed high Vp/Vs 
(compressional to shear wave velocity) ratios in 
prolongation of the Walvis Ridge, which might 
be related to a thermal mantle anomaly (Heit et 
al., 2015). Further volcanic features onshore in-
clude a lineament of kimberlites, scattered along 
the eastward-extrapolated ridge axis (Fig. 4). 
Such rocks have long been associated with 
hotspots under thick continental lithosphere 
and indicate the presence of a thermal anomaly 
beneath the craton (e.g., Crough et al., 1980). 
Some of the rocks show age progression similar 
to hotspot tracks (Crough et al., 1980), although 
the progression is not as clear as for oceanic is-
land chains, or even absent (Bailey and Foulger, 
2003). If these features were formed in coinci-
dence with the Tristan hotspot, the onset of the 
Walvis Ridge cannot mark the beginning of the 
Tristan hotspot chain (Fig. 5). Furthermore, the 
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Figure 5. Sketch of the 
proposed breakup model. 
A: The hotspot existed 
prior to the rifting and 
formed lowdegree melts 
at the hotspot location. 
Lithospheric structure 
focused intrusions vent
ing to the surface and 
marking the hotspot 
trail by kimberlites. B: 
Changing plate boundary 
forces (Jokat et al., 2003) 
stretched the lithosphere 
and initiated rifting. De
compression melting at 
the thinned areas gener
ated large volumes of 
melt, which formed the 
large flood basalt prov
inces. The following on
set of seafloor spreading 
was characterized by ex
cessive melt extraction 
building the volcanic margins. C: Further plate movement over the hotspot formed the Walvis 
Ridge. HVLC—highvelocity lower crustal body; SDR—seaward dipping reflectors.

 on September 15, 2015geology.gsapubs.orgDownloaded from 

http://geology.gsapubs.org/


934 www.gsapubs.org | Volume 43 | Number 10 | GEOLOGY

hotspot-derived mantle melts could not actively 
erode the thick lithosphere beneath the craton, 
and intruded into the lithosphere only at preex-
isting weak zones. This implies that the source 
for the large volumes of melt required for the 
flood basalt volcanism was ponded hotspot 
material at the base of the lithosphere, as previ-
ously suggested (Sleep, 2006). With the onset 
of rifting in response to changing plate bound-
ary forces driven by spreading systems in the 
young ocean basins around Antarctica (Jokat et 
al., 2003), new melt pathways became available 
for the ponded melt to migrate to the surface 
and form the large flood basalt provinces and 
the volcanic margins. The asymmetric distribu-
tion of the continental flood basalts might be 
explained with regional geology and rift his-
tory. The Paraná flood basalts are located at a 
major deformation zone, the Paraná-Chacos 
shear zone, which has also been interpreted as a 
failed rift arm of a triple junction. Extension of 
as much as 150 km of shear movement occurred 
here (Moulin et al., 2010), and might have fo-
cused magmatism at this location.

In conclusion, we do not find traces of large-
scale intrusions within the continental crust at 
the junction with the Walvis Ridge, which would 
indicate important plume head–lithosphere 
interaction during South Atlantic breakup. It 
therefore seems unlikely that the arrival of the 
Tristan plume head initiated the opening of the 
South Atlantic Ocean.
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