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Abstract

The Eastern Ghats Belt (EGB) is a deeply eroded Proterozoic orogenic belt juxtaposed against the Archaean Dharwar–Bastar–
Singhbhum cratons in the Indian Shield. The tectono-metamorphic history of this belt is broadly similar to the Grenvillian orogenic
belts. The EGB exposes dominantly the granulite-facies rocks such as charnockites, khondalites and migmatitic gneisses with less
abundant intermediate to mafic granulites. The granulites are intruded by small plutons of granites, syenites and anorthosites. The
northern and southern parts of the belt (NEGB and SEGB) have distinct crustal histories, but 1600–1000–550 Ma old tectono-
metamorphic events are common to both the belts. In this research, we attempt to understand the present-day and past thermal state
of this orogen on the basis of our radioelement (K, U and Th) measurements at 562 sites using in-situ gamma-ray spectrometry,
with other geological and geophysical constraints. The dominant rock types of the NEGB and SEGB have similar radioelement
abundances (N3% K, 3 ppm U and 30 ppm Th) and heat production. Heat production of charnockites, gneisses, khondalites and
intermediate granulites of the NEGB is 2.9, 2.8, 2.9 and 1.1 μW m−3, respectively. In the SEGB, they are 2.7, 2.5, 2.8 and 0.6 μW
m−3, respectively, and the mafic granulites are the lowest in heat production (0.3 μWm−3). On the basis of the heat production data
and crustal petrologic models, we show that the crustal contribution of the NEGB and SEGB is 54 and 45 mW m−2, respectively,
which are broadly in good agreement with the available surface heat flow data. Thermal models of the present-day EGB crust
indicate that the temperature at the Moho is ∼550 °C. Radioelements and heat production of the Eastern Ghats granulites are higher
than the other granulite belts in the Indian shield. The crustal radiogenic heat contribution and Moho temperatures of the EGB are
higher than the adjoining Archaean cratons. This could also be responsible for the development of inverted metamorphic isograds
in the tectonic boundary between the EGB and the adjoining cratons during a collisional orogenic event at about 550 Ma ago.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In continental lithosphere, the thermal structure is
mainly controlled by the nature of depth distribution of
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heat producing elements (K, U and Th), which are largely
concentrated in the crust, and contribute significantly to
the overall heat flow (e.g. [1]). Several studies have been
attempted to understand the nature of radiogenic heat
production distribution within the crust, particularly,
along the exposed crustal cross-sections that provided
an excellent opportunity to sample the various rock types
roduction in the thermal evolution of a Proterozoic granulite-facies
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constituting the crust [2–7]. Among the crustal lithologies,
the granulite-facies rocks represent the middle- to lower-
continental crust, and therefore provide an insight to the
composition and evolution of the deeper parts of the crust
[8,9]. Although upper crustal rocks have been sampled
well everywhere (see [10]), the deeper crustal rocks can be
studied only from the crustal cross-sections exposing the
granulite-facies rocks, and those found as xenoliths in
basalts and kimberlites [11]. As xenolithic samples may
not be representative of the entire lower crust, the exposed
sections provide better constraints on the deeper crustal
composition. In addition, the granulite-facies rocks shed
light on the thermal evolution of the deeper crust and
provide an opportunity to characterize its thermal pro-
perties, for example, heat production distribution [2–4,6].

Geochemical and petrological studies show that, as a
result of high-grade metamorphism, large-ion lithophile
elements including the heat producing elements (K, U
and Th) are often removed significantly from the
granulites (see [12]), either due to partial melting (e.g.
[13]) or fluid–rock interaction (e.g. [14]). Heat flow and
heat production studies over the various granulite
provinces indicate that the granulites are low heat
producing (average of ∼0.4 μW m−3); as a result, the
granulitic crust contributes less to heat flow (e.g.
[15,16]). It appears that these inferences are suitable to
some of the Archaean provinces only. On the other hand,
Proterozoic orogens exposing granulites have not been
studied thoroughly in terms of heat production distribu-
tion. As these orogens evolved in a different manner
compared to the adjoining Archaean cratons, examining
Fig. 1. Sketch map of the Indian Shield showin
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their thermal structure is important. Also, there is a great
need to evaluate the role of radiogenic heat production in
the thermal evolution of such orogens, as it plays a
crucial role in driving crustal metamorphism [17–20].

The Eastern Ghats Belt (EGB) is a deeply eroded part
of a Proterozoic orogen exposing one of the largest
granulite-facies terrains in the Indian Shield (Fig. 1).
Extensive geochemical, petrological and geochronolog-
ical studies have been carried out in this belt (see [21]),
which have improved our understanding of the Protero-
zoic crustal evolution, but there is no detailed study on
the radioelement and heat production distribution in this
belt. Therefore, in this study, we present radioelement
(K, U and Th), and heat production characteristics of the
granulite-facies rocks exposed in the Eastern Ghats Belt.
Based on these data and other geological and geophys-
ical constraints, we model the crustal thermal structure of
the present-day EGB and for the past (∼550 Ma ago) to
understand the thermal history of this orogen.

2. Geology

The Eastern Ghats Belt is∼900 km long and N300 km
wide in the northern part and a few tens of kilometerswide
in the southern part (Fig. 2). Dobmeier and Raith [21]
have summarized the geological history of the belt. Major
rock types are khondalites (quartz–K feldspar–biotite–
garnet–sillimanite±graphite), charnockites (quartz–K
feldspar–orthopyroxene–clinopyroxene–garnet±biotite±
amphibole), migmatitic gneisses (quartz–K feldspar–
biotite–amphibole) with less dominant intermediate
g the location of the Eastern Ghats Belt.
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Fig. 2. Geological map of the Eastern Ghats Belt [38]. Rock types: a — gneisses, b — charnockites, c — khondalites, d — anorthosites, e —
Gondwana sedimentary rocks, and f — alluvium. The Eastern Ghats Belt is juxtaposed against the Dharwar–Bastar–Singhbhum cratons along a
thrust zone. The belt is dissected by Godavari (GG) and Mahanadi (MG) grabens. Heat flow values (mWm−2) are shown in the open rectangles (S—
Sattupalli, A — Aswaraopet, and C — Chintalapudi). NEGB — Northern Eastern Ghats Belt, SEGB — Southern Eastern Ghats Belt, and VSZ —
Vamsadara Shear Zone. The localities, in the vicinity of which a number of in-situ analyses could be grouped together, have been shown as a number
in the map. Locality names and radioelement and heat production data are given in Table 1.
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Table 1
Radioelement and heat production characteristics of various rock types in the Eastern Ghats Belt

Map no. Stations N Mean Th
(ppm)

Mean U
(ppm)

Mean K
(%)

Th/U Mean HP, present-day Mean HP, 550 Ma ago

The Northern Eastern Ghats Belt (NEGB)
Charnockites:
1 Angul 4 6.39 (1.68) 2.45 (0.12) 2.51 (0.49) 2.61 1.46 (0.15) 1.63 (0.16)
2 Tangi 3 19.88 (4.32) 2.23 (0.74) 4.63 (1.16) 8.91 2.36 (0.57) 2.61 (0.64)
3 Nayagarh 12 27.56 (5.49) 1.38 (0.13) 3.81 (0.26) 19.97 2.59 (0.41) 2.81 (0.43)
4 Dasphalla 11 28.03 (5.22) 2.24 (0.29) 4.36 (0.36) 12.51 2.89 (0.43) 3.15 (0.45)
6 Phulbani 19 28.12 (3.33) 2.65 (0.18) 4.61 (0.19) 10.61 3.02 (0.26) 3.31 (0.27)
7 Bhanjanagar 14 31.11 (3.96) 2.57 (0.35) 4.81 (0.16) 12.11 3.23 (0.33) 3.52 (0.34)
8 Boira 6 38.90 (5.13) 2.17 (0.21) 3.86 (0.38) 17.93 3.57 (0.35) 3.83 (0.37)

All data 69 28.07 (3.38) 2.28 (0.27) 4.28 (0.52) 12.31 2.90 (0.35) 3.16 (0.38)
Gneisses:
1 Angul 7 23.43 (6.60) 1.62 (0.22) 3.73 (0.50) 14.48 2.36 (0.48) 2.58 (0.50)
2 Tangi 4 31.62 (2.47) 3.21 (0.91) 3.15 (0.68) 9.85 3.27 (0.43) 3.53 (0.48)
5 Boinda 14 25.37 (3.13) 1.85 (0.24) 3.64 (0.34) 13.71 2.54 (0.28) 2.76 (0.30)
10 Deogan 5 28.98 (7.46) 3.63 (1.44) 4.50 (0.24) 7.98 3.32 (0.30) 3.63 (0.31)
11 Patnagarh 8 32.60 (5.42) 2.06 (0.12) 3.44 (0.20) 15.83 3.07 (0.38) 3.31 (0.39)
12 Saintala 8 25.79 (4.24) 1.92 (0.29) 4.87 (0.29) 13.43 2.70 (0.36) 2.97 (0.37)

All data 46 27.34 (1.96) 2.18 (0.21) 3.88 (0.17) 12.57 2.78 (0.15) 3.03 (0.16)
Khondalites:
1 Angul 2 18.72 1.63 3.03 11.52 1.98 2.16
8 Boira 2 29.68 2.02 2.33 14.69 2.50 2.63
10 Deogan 3 32.65 (2.97) 2.59 (0.68) 3.70 (0.17) 12.61 3.23 (0.25) 3.49 (0.26)
11 Patnagarh 3 36.06 (3.79) 2.05 (0.12) 2.74 (0.23) 17.59 3.24 (0.24) 3.46 (0.24)
12 Saintala 8 28.35 (4.03) 2.27 (0.26) 3.68 (0.39) 12.49 2.86 (0.28) 3.10 (0.28)

All data 18 29.43 (2.19) 2.18 (0.16) 3.31 (0.24) 13.50 2.87 (0.16) 3.10 (0.16)
Intermediate granulites:
3 Nayagarh 2 15.73 0.94 1.04 16.82 1.43 1.52
12 Saintala 3 7.60 (1.98) 0.58 (0.14) 0.65 (0.28) 13.10 0.73 (0.16) 0.79 (0.17)

All data 5 10.85 (2.90) 0.72 (0.18) 0.81 (0.21) 15.07 1.01 (0.21) 1.08 (0.21)
Anorthosites:
9 Balangir 15 2.04 (0.30) 0.52 (0.08) 0.67 (0.02) 3.92 0.36 (0.04) 0.41 (0.04)

The Southern Eastern Ghats Belt (SEGB)
Charnockites:
14 Bhawanipatna 16 36.37 (3.06) 1.56 (0.13) 3.85 (0.21) 23.31 3.24 (0.22) 3.48 (0.23)
15 Muniguda 4 33.17 (3.14) 5.59 (1.32) 2.63 (0.38) 5.93 3.93 (0.41) 4.25 (0.44)
16 Rayagada 11 33.80 (3.60) 1.62 (0.19) 3.68 (0.27) 20.86 3.06 (0.25) 3.30 (0.26)
17 Palakonda 7 37.75 (6.75) 2.17 (0.57) 3.62 (0.23) 17.40 3.47 (0.48) 3.79 (0.50)
18 Srikakulam 6 25.93 (6.53) 1.21 (0.17) 3.15 (0.21) 21.43 2.37 (0.48) 2.56 (0.50)
19 Parvathipuram 8 18.43 (3.90) 1.59 (0.09) 3.70 (0.16) 11.59 2.00 (0.27) 2.21 (0.28)
20 Lakshmipur 16 34.22 (5.87) 1.57 (0.14) 3.67 (0.12) 21.80 3.08 (0.41) 3.31 (0.42)
21 Bobbilli 5 24.95 (7.52) 1.90 (0.50) 4.16 (0.19) 13.13 2.58 (0.58) 2.82 (0.60)
22 Vizianagaram 9 33.38 (6.96) 2.84 (0.40) 4.23 (0.27) 11.75 3.40 (0.58) 3.68 (0.61)
23 Koraput 6 18.77 (5.12) 1.09 (0.17) 3.62 (0.35) 17.22 1.90 (0.39) 2.08 (0.40)
24 Sunabeda 13 13.57 (3.08) 2.21 (0.17) 4.44 (0.35) 6.14 2.45 (0.22) 2.62 (0.23)
25 Anantagiri 15 19.64 (3.49) 1.44 (0.23) 3.50 (0.26) 13.64 2.03 (0.29) 2.23 (0.31)
28 Lamtaput 7 29.69 (15.3) 1.77 (0.48) 4.06 (0.44) 16.77 2.86 (1.19) 3.10 (1.24)
29 Boipariguda 5 17.24 (4.06) 2.09 (0.36) 2.72 (0.21) 8.25 1.96 (0.34) 2.15 (0.35)
30 Mattili 7 29.93 (6.72) 2.58 (0.65) 3.89 (0.17) 11.60 3.06 (0.55) 3.33 (0.58)
31 K. D. Pet 6 31.36 (8.05) 1.13 (0.37) 3.75 (0.42) 27.75 2.78 (0.62) 3.00 (0.64)
32 Malkangiri 10 24.28 (10.6) 2.65 (0.79) 4.14 (0.33) 9.16 2.72 (0.84) 2.98 (0.88)
33 Kalimela 14 40.06 (6.71) 2.51 (0.62) 3.72 (0.25) 15.96 3.72 (0.58) 3.99 (0.61)
34 Koyyuru 9 30.21 (4.55) 0.99 (0.14) 2.87 (0.26) 30.52 2.58 (0.35) 2.76 (0.37)
35 Jadangi 7 31.61 (10.4) 0.95 (0.22) 3.27 (0.20) 33.27 2.71 (0.76) 2.90 (0.78)
36 Addateegala 4 31.66 (6.84) 0.87 (0.31) 2.87 (0.81) 36.39 2.65 (0.51) 2.83 (0.54)
37 R. C. Varam 8 43.66 (9.68) 1.14 (0.22) 3.95 (0.35) 38.30 3.64 (0.70) 3.89 (0.73)
38 Chinturu 9 23.49 (4.02) 2.98 (0.64) 3.88 (0.28) 7.88 2.72 (0.28) 2.99 (0.30)
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Table 1 (continued )

Map no. Stations N Mean Th
(ppm)

Mean U
(ppm)

Mean K
(%)

Th/U Mean HP, present-day Mean HP, 550 Ma ago

The Southern Eastern Ghats Belt (SEGB)
Charnockites:
39 Kondapalli 13 26.94 (5.55) 2.20 (0.41) 3.86 (0.30) 12.25 2.76 (0.43) 3.00 (0.45)
41 Amaravathi 3 32.11 (19.4) 0.69 (0.10) 2.53 (0.31) 46.54 2.61 (1.29) 2.77 (1.31)
42 Perecherla 12 29.06 (6.01) 1.91 (0.23) 3.31 (0.24) 15.21 2.78 (0.43) 3.00 (0.44)
43 Kondaveedu 18 22.62 (4.62) 1.71 (0.20) 4.03 (0.30) 13.23 2.36 (0.33) 2.58 (0.34)
44 Kotappakonda 13 30.33 (7.84) 1.73 (0.20) 3.57 (0.33) 17.53 2.84 (0.56) 3.07 (0.58)
45 Ramkuru 10 19.51 (5.25) 1.00 (0.13) 2.85 (0.28) 19.51 1.85 (0.34) 2.01 (0.34)

All data 271 28.33 (1.26) 1.80 (0.08) 3.63 (0.06) 15.74 2.73 (0.10) 2.96 (0.10)
Gneisses:
17 Palakonda 4 28.84 (1.98) 2.12 (0.29) 3.51 (0.09) 13.60 2.84 (0.08) 3.07 (0.07)
18 Srikakulam 4 17.56 (5.12) 1.30 (0.19) 3.25 (0.05) 13.51 1.83 (0.39) 2.01 (0.40)
22 Vizianagaram 5 27.18 (4.93) 2.61 (0.47) 2.00 (0.68) 10.41 2.71 (0.42) 2.90 (0.44)
25 Anantagiri 4 28.95 (7.00) 1.06 (0.07) 2.40 (0.22) 27.31 2.47 (0.49) 2.64 (0.51)

All data 17 25.75 (2.57) 1.82 (0.22) 2.74 (0.25) 14.13 2.47 (0.20) 2.67 (0.21)
Khondalites:
26 Visakhapatnam 21 31.39 (1.79) 1.79 (0.15) 1.88 (0.35) 17.54 2.78 (0.17) 2.95 (0.19)
31 K. D. Pet 3 36.64 (3.10) 2.57 (0.24) 2.17 (0.25) 14.26 3.36 (0.23) 3.58 (0.24)
34 Koyyuru 4 26.62 (2.78) 1.09 (0.34) 2.96 (0.20) 24.42 2.37 (0.22) 2.55 (0.23)
36 Addateegala 12 26.57 (3.42) 1.91 (0.18) 2.99 (0.21) 13.91 2.58 (0.27) 2.78 (0.28)
37 R. C. Varam 7 30.33 (3.92) 1.65 (0.13) 1.91 (0.49) 18.38 2.67 (0.26) 2.84 (0.27)
40 Vijayawada 9 32.15 (1.29) 2.26 (0.26) 2.85 (0.16) 14.23 3.04 (0.13) 3.26 (0.14)

All data 56 30.29 (1.17) 1.87 (0.09) 2.37 (0.17) 16.20 2.76 (0.10) 2.96 (0.11)
Intermediate granulites:
20 Lakshmipur 2 4.61 0.72 1.04 6.44 0.60 0.67
23 Koraput 8 3.26 (0.38) 0.68 (0.08) 0.90 (0.13) 4.79 0.49 (0.05) 0.54 (0.05)
24 Sunabeda 4 5.63 (0.34) 1.20 (0.25) 1.09 (0.10) 4.69 0.80 (0.08) 0.89 (0.09)
27 Araku 7 3.23 (0.40) 0.66 (0.13) 1.14 (0.20) 4.89 0.50 (0.07) 0.56 (0.08)
28 Lamtaput 4 0.96 (0.27) 0.66 (0.14) 0.59 (0.19) 1.45 0.29 (0.04) 0.33 (0.05)
32 Malkangiri 3 5.58 (2.26) 0.67 (0.12) 1.02 (0.15) 8.33 0.66 (0.20) 0.72 (0.21)
39 Kondapalli 6 5.52 (0.76) 0.41 (0.04) 1.55 (0.09) 13.46 0.63 (0.07) 0.71 (0.07)
41 Amaravathi 5 4.56 (1.25) 0.67 (0.07) 1.56 (0.20) 6.81 0.63 (0.10) 0.71 (0.11)
42 Perecherla 2 0.27 0.21 1.17 1.29 0.18 0.23
44 Kotappakonda 2 6.39 0.54 0.52 11.82 0.63 0.68

All data 43 4.02 (0.36) 0.66 (0.05) 1.12 (0.07) 6.00 0.55 (0.03) 0.62 (0.04)
Mafic granulites:
13 Karlapada 8 1.66 (0.68) 1.19 (0.90) 1.13 (0.91) 1.39 1.11 (0.92) 1.13 (0.91)
45 Ramkuru 5 2.12 (0.95) 0.32 (0.14) 0.30 (0.14) 6.63 0.28 (0.12) 0.30 (0.13)

All data 13 1.83 (0.49) 0.33 (0.04) 0.28 (0.07) 5.55 0.26 (0.05) 0.28 (0.05)
Leptynites:

All data 9 25.02 (3.78) 5.00 (3.46) 4.38 (0.20) 5.00 3.43 (0.82) 3.73 (0.91)

Standard error of the mean is given in parenthesis. N is number of measurements. Unit of heat production (HP) is μW m−3.
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granulites (quartz–plagioclase–clinopyroxene–ortho-
pyroxene–garnet) and mafic granulites (plagioclase–
clinopyroxene–orthopyroxene–garnet). Small plutons of
granites, alkaline rocks, and anorthosites intrude these
granulites, mostly along the western margin of the EGB.

Based on the isotopic geochemical studies of Rickers
et al. [22], we divide the Eastern Ghats into the northern
Eastern Ghats Belt (NEGB) and southern Eastern Ghats
Belt (SEGB) with the Vamsadara Shear Zone (VSZ)
being their notional boundary (Fig. 2). The NEGB in-
cludes the area between the VSZ and the Mahanadi
graben, where Nd model ages of the granulites are
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat p
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largely Proterozoic (∼2200–1800 Ma old). In contrast,
the granulites of the SEGB, which are exposed to the
north (up to the VSZ) and south of the Godavari graben,
have Archaean (∼3900–2500 Ma old) Nd model ages.
However, both these belts have undergone polyphase
deformation [23,24], and three episodes of regional
metamorphic events: 1600 Ma and 1000 Ma old
granulite-facies metamorphism, and ∼550 Ma old
amphibolite-facies metamorphism [22,25–28], whose
imprints are not preserved uniformly in all places. The
granulites of the NEGB and SEGB record peak
metamorphic pressures from ∼8 to 12 kbars, and peak
roduction in the thermal evolution of a Proterozoic granulite-facies
), doi:10.1016/j.epsl.2006.11.018
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Fig. 3. K, U and Th distributions in the Archaean and Proterozoic
granulites of the global shields (data from the sources of Fig. 5) and in
the Indian Shield (data of this study, Kumar and Reddy [6] and Ray
et al. [16]). DC—Dharwar Craton (Archaean), EGB— Eastern Ghats
Belt (Proterozoic), and SGT — Southern Granulite Terrain
(Proterozoic).
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temperatures from ∼800 °C up to N1000 °C, showing
variable retrograde P–T paths (clockwise and anticlock-
wise paths) [29]. Notably this belt has undergone ultra-
high temperature (UHT) metamorphism reaching
N1000 °C, at several places. Although the ages of
these metamorphic events are not fully established, the
available isotope geochronologic data clearly suggest
that the western margins of the NEGB and SEGB are
dominated by the imprints of 1600 Ma old granulite-
facies metamorphism, and the eastern parts record
∼1000 Ma old granulite-facies and ∼550 Ma old
amphibolite-facies metamorphic events (e.g. [26]).

The EGB is cut by NW–SE trending linear rift zones,
the Mahanadi and Godavari grabens in the north and
south, respectively, which are the locales of Paleozoic–
Mesozoic Gondwana sedimentation, and are associated
with extensive coal deposits and hydrocarbon occur-
rences (e.g. [30]). The EGB is juxtaposed against the
middle to late Archaean Dharwar–Bastar–Singhbhum
cratons. The time of amalgamation event has not been
clearly constrained. However, in the absence of 1600
and 1000 Ma old metamorphic events in the vicinity of
the adjoining cratons, it appears that the amalgamation
could have been between 850 Ma and 550 Ma ago (e.g.
[31,32]). A thrust fault, whose sense of displacement is
top-to-west, marks the boundary between the EGB and
the adjoining cratons. The footwall cratonic rocks close
to the thrust belt preserve inverted metamorphic
isograds, and the terrains on either side are characterized
by distinct metamorphic P–T histories [33].

In recent years, in the framework of the Rodina Super-
continent reconstruction, the EGB was correlated with
Enderby Land of the eastern Antarctica, on the basis of the
metamorphic rocks characterized by similar P–T–t evol-
ution (e.g. [29,34]), denudation and thermal histories (e.g.
[26,28,35]), and isotopic geochemical systematics (e.g.
[22]). Therefore, in most of the palaeo-geographic recon-
structions of the Gondwana, from the time middle Prote-
rozoic to Mesozoic, the EGB is considered to be an
integral part of the eastern Antarctica that consists of the
Rayner Complex, the Mawson Coast area, the Prydz Bay
and the Northern Charles Mountains (see also [36]). Lith-
osphere along the easternmargin of the EGB is found to be
thinner compared to the adjoining regions because of the
effect of Indo-Antarctic rifting around 120 Ma ago [37].

3. Data

3.1. Gamma-ray spectrometry

We have determined the concentration of radioele-
ments (K, U and Th) in the field using a SCINTREX
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies
orogenic belt: Eastern Ghats, Indian Shield, Earth Planet. Sci. Lett. (2006), doi:10.1016/j.epsl.2006.11.018
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Fig. 4. Heat production data of the granulites of the Eastern Ghats Belt. Mean and standard error are shown in parenthesis.
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gamma-ray spectrometer that contains a 113-cubic-inch
NaI(Tl) crystal as sensor. Count rates were obtained from
the four channels of a stabilized gamma-ray spectrum.
The method is the same as described by Ray et al. [16]
Count time was generally set for 300 s for the rock types
enriched in radiolements (e.g., charnockites, khondalites,
and gneisses), and was increased to 600 s in the case of
rock types that are depleted in radioelement abundance
(e.g., anorthosites and intermediate to mafic granulites).
The errors in general do not exceed 2% for K and 5% for
U and Th. The outcrops studied expose un-weathered
rocks (fresh quarry surfaces), which satisfy 2π geometry
requirements. It is worth mentioning here that the results
of the in-situ gamma-ray spectrometry are in good
agreement with the results obtained by XRF for K and
INAA for U and Th, both at the low (0.5% K, 0.5 ppm Th
and 0.2 ppm U) (see [16]) and high concentration levels
(KN3%,UN2 ppm and ThN10 ppm). Considering the in-
situ gamma-ray spectrometry used in this study, it is
possible that secular disequilibrium has some effect on the
U measurements, and its impact may vary from place to
place depending on the nature of fluid–rock interaction
(see [5,39]). Ketcham [39] suggests a method for
detection and correction for the secular disequilibrium.
This method could not be applied due to the limitations in
the in-situ gamma-ray spectrometry used here. Therefore,
we indicate that the U determinations could be slightly
underestimates. In this study, we have determined
radioelement abundances at 562 sites, which include the
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat p
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rock formations such as charnockites (n=340), gneisses
(n=63), khondalites (n=74), intermediate granulites
(n=48), mafic granulites (n=13), leptynites (n=9) and
anorthosites (n=15), covering both the NEGB and SEGB
(Table 1).

3.2. Radioelements

The radioelement data (K, U and Th) of the EGB are
presented in Table 1. In the NEGB and SEGB, the
dominant granulite-facies rocks–charnockites, gneisses
and khondalites are enriched in radioelements (3% K,
3 ppm U and N30 ppm Th), while the intermediate to
mafic granulites are depleted (Table 1). When the
radioelement data of granulites of the NEGB and SEGB
are compared, they have broadly similar radioelement
abundances including the elemental ratios (Table 1),
although the protolithic ages and isotopic geochemical
evolution of these two belts are shown to be different [22].
In these rocks, K is mainly hosted in K-feldspar and
biotite, while the accessory minerals such as monazite,
zircon, and apatite are themain carriers of U and Th. Also,
the EGB granulites form the main source of beach-placer
deposits of radioactive minerals (e.g., monazite and
zircon) along the east coast of India [40,41]. Another
observation is that the EGB granulites are characterized
by high Th/U ratios (Table 1). It may be related to the
effect of polyphase high-grade metamorphic events in the
EGB, as the granulite-facies metamorphism greatly
roduction in the thermal evolution of a Proterozoic granulite-facies
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Fig. 5. Heat production of the Archaean and Proterozoic granulites
world-wide. References: 1—[48], 2—[6], 3—[49], 4—[4], 5—[2], 6—
[50], 7—[51], 8—[51], 9—[52], 10—[53], 11—[54], 12—[54], 13—
[55], 14—[56,57], 15—[58], 16—[4], 17—[59], 18—[59], 19—[59],
20—[60], 21—[61], 22—[3], 23—[62], 24—[63], 25—[3], 26—[3],
27—[64], 28—[65], 29—[66], 30—[67], 31—[50], 32—[68], 33—
[62], 34—[50], 35—[69], 36—[70], 37—[16], 38—[71], 39—[50],
40—[72], 41—[73], 42—[61], 43—[66], 44—[53], 45—SEGB [this
study], 46—NEGB [this study], 47—[74], 48—[16], 49—[75], 50—
[42,76], 51—[72], 52—[50], 53—[16], 54—SEGB [this study], 55—
NEGB [this study], and 56—[77]. Andreoli et al. [78] report very high
heat producing granulites from the Proterozoic Namaqualand belt,
South Africa, which is not shown in Fig. 5.
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modifies the chemistry and mineralogy of the protoliths
(see [12]). For example, Bea and Montero [42] show that
the monazite bearing granulite-facies rocks (e.g., meta-
pelites) have higher Th/U ratios than the amphibolite-
facies counterparts, indicating the preferential depletion
of U due to the granulite-facies metamorphism. In
addition, we find that the major rocks of the Indian Shield
[6,16,43] and some granulite provinces elsewhere are also
characterized by high Th/U ratios similar to the EGB.

It is well-known that the magmatic and sedimentary
rocks show evidence for temporal variation of the
composition of the continental crust [44–46]. In
particular, these rocks show an increase of K, U and
Th abundance with decreasing age. However, there is no
study that includes the granulites for such tabulations.
Therefore, we compile the published data of K, U and
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat p
orogenic belt: Eastern Ghats, Indian Shield, Earth Planet. Sci. Lett. (2006
Th of the granulites of the different shield areas (Fig. 3).
We find that there is no marked difference in
radioelement abundances between the Archaean and
Proterozoic granulites (Fig. 3). On the other hand, when
Proterozoic felsic granulites (charnockites) of the EGB
are compared with the late Archaean felsic granulites
(gneisses and enderbites) of the Dharwar craton [6],
conclusively, the EGB granulites are richer in radio-
elements (Fig. 3). Similarly, the felsic granulites
(charnockites) of the Proterozoic Southern Granulite
Terrain occurring to the south of the Dharwar craton are
also richer in radioelements [16], but they are not as rich
as those of the EGB granulites (Fig. 3). Therefore, the
temporal variation of the radioelement abundance in the
granulite-facies rocks is evident in the southern Indian
Shield, but is apparently not applicable elsewhere.

3.3. Heat production

Heat production of the EGB rocks was calculated
from the radioelement data using the conversion factors
of Rybach [47] and is presented in Table 1. The
granulites of the NEGB and SEGB have similar heat
production characteristics (Fig. 4). The charnockites,
gneisses and khondalites are characterized by high heat
production (N2.5 μW m−3), while the intermediate
granulites are lower (0.55 to 1 μW m−3) and the mafic
granulites are the lowest (0.26 μW m−3). Also, the heat
production of the EGB granulites is higher, when
compared to the late Archaean granulites of the
adjoining Dharwar Craton (average of 0.40 μW m−3)
[6]. In addition, the Proterozoic granulites (charnockites
and khondalites) of the Southern Granulite Terrain of the
southern India are also characterized by high heat
production of N1 μW m−3 [16]. These examples
sufficiently demonstrate that the granulites are not low
in heat production everywhere. Furthermore, we
examine the nature of heat production of granulites
occurring in the Archaean and Proterozoic shield areas
elsewhere, gathering the published radioelement data
(Fig. 5). We find that there are several such examples of
high heat producing granulites both in the Archaean and
Proterozoic provinces (Fig. 5). This observation further
questions the general belief that the granulites charac-
teristically have low heat production.

4. Present-day geotherms

4.1. Crustal contribution to the surface heat flow

For modeling the crustal temperatures, it is essential
to determine the radiogenic heat contribution of the crust
roduction in the thermal evolution of a Proterozoic granulite-facies
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Table 2
The present-day crustal contribution of the Eastern Ghats to the surface heat flow

Depth layers Rocks Volume
(%)

Heat Production
(μW m−3)

Weighted heat production
(μW m−3)

Gross heat production of layers
(μW m−3)

Northern Eastern Ghats Belt (NEGB) (35-km-thick crust)
0–6 km (5.90 km)⁎ Charnockites 25 2.90 0.73 2.74

Gneisses 50 2.78 1.39
Khondalites 20 2.87 0.57
Inter. granulites 5 1.01 0.05

6–20 km (6.45)⁎ Charnockites 75 2.90 2.18 2.43
Inter. granulites 25 1.01 0.25

20–35 km (7.20)⁎ Mafic granulites 100 0.26 0.26 0.26

Southern Eastern Ghats Belt (SEGB) (40-km-thick crust)
0–5 km (5.50–6.20)⁎ Charnockites 40 2.73 1.09 2.49

Gneisses 10 2.47 0.25
Khondalites 40 2.76 1.10
Inter. granulites 7 0.55 0.04
Mafic granulites 3 0.26 0.01

5–15 km (6.30–6.50)⁎ Charnockites 80 2.73 2.18 2.27
Inter. granulites 15 0.55 0.08
Mafic granulites 5 0.26 0.01

15–25 km (6.60)⁎ Inter. granulites 90 0.55 0.50 0.53
Mafic granulites 10 0.26 0.03

25–40 km (6.80–6.90)⁎ Mafic granulites 100 0.26 0.26 0.26

⁎Compressional wave (P-wave) velocity of layers is expressed in km s−1; data source: [80,81].
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by constraining the heat production variation with
depth. This was done in the best way for the areas that
expose crustal cross-sections. In their absence, as in the
case of EGB, where the exposed rocks are only the
granulite-facies rocks, it is difficult to construct the
entire crustal lithology on the basis of the surface
geology. However, it can possibly be deduced from the
compressional wave (P-wave) velocity sections of the
deep seismic sounding (DSS) studies using the
laboratory P-wave velocity data of the crustal rocks
(e.g. [9,79]). However, it should be remembered that
this approach does not provide unique lithologic
models, as several rock types can have similar P-wave
velocities. Therefore, in the absence of better con-
straints, we model the crustal lithology of EGB using the
deep seismic sounding studies [80,81] and the surface
geology. To convert the P-wave velocity sections to the
rock assemblages, we utilize the laboratory P-wave
velocity data of the granulites [79,82]. We assign the
surface heat production data to the model rock types of
the deeper sections, assuming that the exposed EGB
granulites extend to the Moho with varying proportions
and the adjoining cratons do not merge with the EGB
lithology. These assumptions are reasonable because the
high-grade rocks of the EGB cannot be underlain by its
low-grade rocks (which are now missing on the surface
due to the erosion), and any interference of the adjoining
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat p
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cratonic lithology is expected only along the margins of
the EGB.

Crustal lithology of the NEGB is modeled using
Kaila et al. [80], who conducted the DSS studies along
the Mahanadi Graben (MG). Geological mapping
indicates that the basement rocks of the MG are the
granulites. Therefore, it is reasonable to consider the
MG crustal velocity structure to the rest of the NEGB.
Crustal thickness of the MG is∼35 km and is composed
of three layers with P-wave velocities of 5.9 km s−1,
6.45 km s−1, and 7.2 km s−1, respectively, from the
surface to the Moho [80] (Table 2). On the basis of the
laboratory P-wave velocity data of the granulites
[79,82], we interpret the DSS data in terms of lithology
(Table 2) excluding the surface layer, where P-wave
velocity is also controlled by other rock properties such
as porosity and structural inhomogenity. Therefore, we
assign the rock assemblage of the surface geology to the
topmost layer, which is also in good agreement with the
DSS data (Table 2). As mentioned earlier, on the basis of
the assumption that the exposed granulites extend to the
deeper levels with varying proportions (Table 2), we
estimate the gross heat production of each layer by
integrating surface heat production data and the model
rock assemblages. The gross heat production is 2.74 μW
m−3, 2.43 μW m−3 and 0.26 μW m−3, respectively,
from the surface layer (Table 2). If the above estimates
roduction in the thermal evolution of a Proterozoic granulite-facies
), doi:10.1016/j.epsl.2006.11.018

http://dx.doi.org/10.1016/j.epsl.2006.11.018


Fig. 6. Present-day crustal contribution to the surface heat flow
(mW m−2) and the temperature–depth profiles of the NEGB and
SEGB, which are compared with the geotherms of the adjoining
Dharwar craton (WDC and EDC) [6].
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are realistic, then the contribution of the NEGB crust to
the surface heat flow would be 54 mW m−2 (Fig. 6).

In the SEGB, the DSS studies were carried out in the
Godavari Graben (GG) [81] and a part of which traverses
the GG, where the EGB granulites form the basement.
Therefore, the crustal structure belonging to the EGB
basement is believed to represent the SEGB. In this part,
the crustal thickness is∼40 km, and is composed of four
layers with the P-wave velocities of 5.5–6.2 km s−1,
6.3–6.5 km s−1, 6.6 km s−1, and 6.8–6.9 km s−1, res-
pectively, from the surface to the Moho (Table 2) [81].
As shown in the NEGB, we arrive at the gross heat
production of each layer, which is 2.49 μW m−3,
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat p
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2.27 μWm−3, 0.53 μWm−3, and 0.26 μWm−3, respec-
tively, from the surface layer (Table 2). As a result,
contribution of the SEGB to the surface heat flow is
45 mW m−2 (Fig. 6).

4.2. Crustal temperatures

Surface heat flow, crustal heat production and
thermal conductivity constrain the crustal thermal
structure. In the EGB, surface heat flow measurements
are restricted to the Gondwana sedimentary basins of
the Godavari graben (Fig. 2), where it ranges from 64
to 104 mW m−2 (n=3) [83]. If we consider the lower-
bound of the surface heat flow (64 mW m−2) as the
representative of the SEGB and the crustal contribution
of 45 mW m−2,then the Moho heat flow would be
19 mW m−2, which seems to be reasonable considering
the Moho heat flow observed in the adjoining cratons
[6]. On the other hand, the upper-bound of the surface
heat flow (104 mW m−2) would predict the Moho heat
flow of 59 mW m−2, which seems to be unrealistic
considering the crustal contribution model. Therefore, it
appears that the crustal contribution of the NEGB is
broadly in good agreement with the lower bound of the
surface heat flow observed. There are no surface heat
flow measurements available for the NEGB. We need
to have a higher number of reliable heat flow
measurements from the EGB. In absence of these, for
modeling the crustal geotherms, we assume a Moho
heat flow of 15 mW m−2 for both the NEGB and
SEGB, which is the upper-bound of the Moho heat
flow observed in most of the other shield areas [84].
Furthermore, using the crustal contribution models
(Fig. 6) and pressure- and temperature-dependent
thermal conductivity of Ketcham [5], we model the
crustal geotherms of the present-day EGB adopting 1-D
model assumptions, and are shown in Fig. 6. The
resulting inferred Moho temperatures of the NEGB and
SEGB are ∼550 °C.

In Precambrian shield areas, it is generally observed
that the Proterozoic provinces are characterized by
higher surface heat flow compared to the Archaean
cratons [85]. In the Indian shield, surface heat flow of
the Eastern Ghats is higher [83], when compared to the
adjoining Archaean cratons. The Dharwar craton (DC)
is characterized by the surface heat flow of 30–44 mW
m−2 [86], and in the Bastar craton it varies from 52 to
64 mW m−2 [87]. No surface heat flow measurements
are available for the Singhbhum craton. Radiogenic heat
contribution of the EGB crust varies from 45 to 54 mW
m−2, which is higher than in the adjoining cratons. For
example, in the northern parts of the DC, contribution of
roduction in the thermal evolution of a Proterozoic granulite-facies
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Table 3
Contribution of the Eastern Ghats crust to the surface heat flow at 550 Ma ago

Depth layers Rocks Volume
(%)

Heat production,
(μW m−3)

Weighted heat production,
(μW m−3)

Gross heat production of layers,
(μW m−3)

Northern Eastern Ghats Belt (NEGB) (35-km-thick crust)
Layer 1: 0–15 km Model (x) 100 2.98 2.98 2.98

Model (y) 100 1.79 1.79 1.79
Layer 2: 15–21 km Charnockites 25 3.16 0.79 2.98

Gneisses 50 3.03 1.52
Khondalites 20 3.10 0.62
Inter. granulites 5 1.08 0.05

Layer 3: 21–35 km Charnockites 75 3.16 2.37 2.64
Inter. granulites 25 1.08 0.27

Southern Eastern Ghats Belt (SEGB) (40-km-thick crust)
Layer 1: 0–15 km Model (x) 100 2.68 2.68 2.68

Model (y) 100 1.79 1.79 1.79
Layer 2: 15–20 km Charnockites 40 2.96 1.18 2.68

Gneisses 10 2.67 0.27
Khondalites 40 2.96 1.18
Inter. granulites 7 0.62 0.04
Mafic granulites 3 0.28 0.01

Layer 3: 20–30 km Charnockites 80 2.96 2.37 2.47
Inter. granulites 15 0.62 0.09
Mafic granulites 5 0.28 0.01

Layer 4: 30–40 km Inter. granulites 90 0.62 0.56 0.59
Mafic granulites 10 0.28 0.03

The Model (x) assumes that the heat production of the Layer 1 is same as the underlying layer 2, while the Model (y) uses the K, U and Th abundance
of the upper crust of Rudnick and Gao [10].
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the crust varies from 23 to 27 mW m−2 (Fig. 6) [6]. For
comparing the EGB with the DC, we also model the
crustal geotherms for the DC using the crustal contri-
bution models shown in Fig. 6 and the temperature- and
pressure-dependent thermal conductivity of Ketcham
[5]. Clearly, the Moho temperatures of EGB (∼550 °C)
are higher than those in the DC (∼300 °C) (Fig. 6).

5. Palaeo-geotherms at 550 Ma ago

In the continental crust, crustal radiogenic heat
production during Precambrian was high (e.g.
[20,88,89]). For example, at the end of the Archaean
(∼2500 Ma ago), the crustal heat production was almost
double the present. Therefore, it was an important
source of heat in driving the crustal metamorphism and
melting in the past [17–19].In the Limpopo belt, the
contrasting thermal evolution recorded in the metamor-
phic P–T data of the granulites of the northern and
southern marginal zones have been attributed to their
contrasting crustal radiogenic heat production [20].
Also, at many places, the contacts between the orogenic
belts and the adjoining cratons are suture zones
represented by the pervasive development of mylonitic
rocks that preserve inverted metamorphic isograds (e.g.
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat p
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[90,91]). Several workers suggest that the high radio-
genic heat production of the over-riding crust might
have significantly contributed to the above phenomena
(e.g. [92–94]).

Along the thrust contact of the EGB and the Bastar
craton (Fig. 2), the footwall cratonic rocks show
evidence for development of the inverted metamorphic
isograds within a distance of few hundred meters toward
the thrust. They preserve the metamorphic mineral
assemblages pertaining to the greenschist, amphibolite
and granulite-facies, respectively, from the lower to
higher levels [33]. In addition, the footwall cratonic
rocks exhibit progressive ductile deformation toward the
thrust zone [32]. The peak metamorphic temperature in
the footwall increases from 350 °C (away from the
thrust zone) to 700 °C (close to the thrust zone) at a
palaeo-crustal depth of ∼20 km (∼6.5 kbar). Whereas
the hanging-wall EGB granulites record peak metamor-
phic temperature of N900 °C at 9.5 kbar pressure,
followed by cooling and decompression to 7 kbar with
800–850 °C (retrograde metamorphism), which may be
the possible thermal state of the EGB at the depth of 20–
23 km, when the inverted metamorphism took place
along the cratonic boundary. Based on the metamorphic
P–T estimates, tectonic fabric, and thermal modeling,
roduction in the thermal evolution of a Proterozoic granulite-facies
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Fig. 7. Temperature–depth profiles of the NEGB and SEGB at
∼550 Ma ago, for a range of Moho heat flow values (0 mW m−2 to
20 mW m−2) and crustal heat production scenarios (model x and y).
See Table 3 for crustal heat production models used in this study.

Fig. 8. A comparison between the metamorphic P–T data (the SEGB
hanging-wall granulites and the cratonic footwall gneisses [33]) and
the 550 Ma ago geotherms of the SEGB (Fig. 7b). Note that the
geotherm pertaining to the crustal contribution model (Y) with the
Moho heat flow value of 10 mW m− 2 better represents the
metamorphic conditions of the EGB hanging-wall granulites.
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the authors [32,33] suggest that the thrusting of hot EGB
crust over the cold Bastar craton could have caused the
development of inverted metamorphic isograds at
550 Ma ago. We examine the crustal heat production
of the EGB, in order to assess its contribution to the
thermal structure of the hot EGB crust at about 550 Ma
ago, considering the decay-corrected heat production
data (Table 1).

5.1. Crustal contribution to the surface heat flow at
550 Ma ago

For modeling the palaeo-geotherms of the EGB, we
follow the same approach as the modeling of the
Please cite this article as: P.S. Kumar et al., The role of radiogenic heat p
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present-day geotherms assuming the steady-state ther-
mal conditions (e.g. [20,88,89]). To do this, we need to
know the crustal thickness, lithology and their heat
production, surface heat flow or Moho heat flow at
550 Ma ago. Crustal thickness of the NEGB and SEGB
is considered to be 35 km and 40 km, respectively,
assuming that there was no crustal thickening. Table 3
provides the lithology of the EGB crust that includes a
∼15-km-thick now-missing uppermost layer, as the
present-day exposure level was at ∼15 km palaeo-depth
at 550 Ma ago. The uppermost layer is underlain by the
crustal layers of the present-day crust without the
lowermost mafic layer (Table 2) (Fig. 6). We do not
include this mafic layer in the palaeo-crustal configu-
ration because this would lead to significant crustal
thickening. Inclusion or omission of the mafic layer
would not significantly modify the thermal models in
the depth-levels of our interest (∼20-km-depth) as they
would have very low heat production (e.g., b0.3 μW
m−3). We assign the decay-corrected heat production
data to these layers (Table 1). For the heat production of
the now-missing uppermost layer, we consider two
scenarios: (1) Model x: the layer may have heat
production similar to the present-day exposed rocks
(i.e., the second granulite-facies layer of the 550 Ma ago
crust); (2) Model y: the layer may have heat production
roduction in the thermal evolution of a Proterozoic granulite-facies
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similar to the generic composition model of the
Proterozoic upper crust, as suggested by Rudnick and
Gao [10]. Both these models are reasonable. For
example, a few exposed crustal cross-sections indicate
that the amphibolite-facies rocks (similar to the
uppermost layer) resting on the granulite-facies rocks
(similar to the second layer) have heat production same
as the granulites [95]. Also, Rudnick and Gao [10]
modeled the composition of Proterozoic upper crust
considering the global geochemical database. Hence, we
consider both the possibilities. Assigning the decay-
corrected heat production data to the crustal layers, we
show the crustal contribution of the NEGB and SEGB to
be 100 mW m−2 and 84 mW m−2, respectively, for the
model x (Fig. 7). On the other hand, if we assume the
model y, it would be 82 mW m−2 and 71 mW m−2,
respectively (Fig. 7). Uncertainties in these estimates
cannot be determined.

5.2. Crustal temperatures at 550 Ma ago

Using the crustal contribution models (Table 3),
variable Moho heat flow (0, 10, and 20 mW m−2) and
P–T dependent thermal conductivity [5], we model the
crustal geotherms of the NEGB and SEGB (Fig. 7). The
Moho temperatures of the NEGB vary from 800 °C to
1400 °C, and in the SEGB from 700 °C to 1200 °C
(Fig. 7). These model temperatures are distinctly higher
than those at the corresponding depth levels of the
present-day geotherms (Fig. 6). We further examine
these geotherms (Fig. 7), in order to find out the one that
would represent the metamorphic P–T data of the EGB
granulites (Fig. 8). As the inverted metamorphic
isograds are observed in the northwestern boundary of
the SEGB (Fig. 2), it is pertinent to compare the
metamorphic P–T data with the geotherms of the SEGB
(Fig. 7b). Of the many geotherms, the one that passes
through the metamorphic P–T data is the geotherm,
which includes the crustal model y and the Moho heat
flow of 10 mW m−2 (Fig. 8). Therefore, it supports a
possibility that the high crustal heat production with
normal Moho heat flow could have been responsible for
the hot thermal condition of the EGB at 550 Ma ago,
which might have caused the development of inverted
metamorphism along its contact with the adjoining
cratons, during the collisional orogenic event at about
550 Ma ago.
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