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Fluid dynamic models of the lithosphere-asthenosphere system are studied. 
These models provide a basis for understanding driving mechanisms involved in 
sea. floor spreading. The asthenosphere is represented as a highly viscous Newtonian 
fluid that is nonrotating, Bo.ussinesq, incompressible, and nondissipative. A sequence 
of two-dimensional model problems is considered in an effort to understand the 
dynamic role of various energy sources available in the upper mantle. The first models 
investigate the role of vertical temperature gradients and find these incapable of 
generating flows in the asthenosphere that move overlying lithospheric plates by viscous 
traction. By considering the combined effect of horizontal and vertical temperature 
gradients, a mechanism for effecting the original breakup of large continental masses 
is suggested. The dynamic role of phase changes is investigated in a series of finite- 
amplitude model problems. The olivine-spinel phase transition is found to increase the 
amplitude of convection by a factor of about 2, and the depth at which the phase 
change occurs is influenced by the convection. A final class of problems explicitly 
consider the lithosphere co.upled to the underlying asthenosphere and the mass flux 
into and out of the asthenosphere implied by moving surface plates. It is found 
that if the subducted lithosphere has a negative buoyancy of the order of present 
estimates, the lithospheric plates will move at velocities of 1-10 cm yr -•. 
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1. INTRODUCTION 

Geology has always included concepts of a mobile, ever-changing surface 
of the earth. The presence of marine fossils, thousands of feet above sea level 
in highly folded mountain ranges, requires the acceptance of large-scale changes 
within continents. Nonetheless, a period of fierce controversy began when a 
meteorologist [Wegener, 1924] proposed that continents themselves were mobile 
and in fact that South America-Africa, once contiguous, had 'drifted' apart. 
This early notion of continental drift was inspired by the near parallelism of the 
Atlantic coasts of South America and Africa.. The similarity of fossils older than 
175 m.y. provided further evidence that in the past no barrier to the migration 
of species existed in what today is the Atlantic Ocean. The hostile reaction with 
which continental drift was received gave notice of the 50-year controversy to 
come. 

The debate persisted so long for lgck of new observations. It was not until 
the decade of the 1960's that new geophysical evidence strongly supported the 
idea that continents have changed and are now changing their spatial relation- 
ships. 

Vine and Matthews [1963] were able to show that the elonga•ted magnetic 
anomalies south of Iceland have a remarkable symmetry about the mid-Atlantic 
ridge; surveys over other portions of the mid-ocean ridge system revealed similar 
anomalies. If the sea floor were moving away from the mid-ocean ridges with 
new basaltic lavas emplaced to maintain a continuous crust, the new lavas 
would acquire a remanent magnetization in the direction of the geomagnetic 
field existing a.t the time of their formation. It is known that the earth's magnetic 
field undergoes periodic reversals of polarity and these reversals would thus 
"tag" a band of lavas formed during each polarity period. Heirtzler et al. 
[1968], using the accepted time scale of magnetic reversals and the elongated 
marine magnetic anomalies, were able to date the sea floor in the vicinity of 
the mid-ocean ridges. This dating allows for estimates of recent spreading 
velocities of the order of 5 cm yr -1. A study of earthquakes with epicenters on 
the ridge axis [Sykes, 1967] indicates tensional fracturing and magmatic intru- 
sion consistent with a spreading ocean floor. Continental drift had now become 

, 

sea floor spreading. 
The mid-ocean ridges, if considered 'sources' of new surface area, require 

the existence of equally strong 'sinks'; such regions of surface area consumption 
are thought to exist in the island arc-deep sea trench areas of the world. Island 
arcs and deep sea trenches are the site of almost all deep earthquake activity 
and volcanism. Oliver and Isacks [1967], using earthquake data from the 
Tonga-Fiji trench, find a 100-km seismically anomalous zone dipping at approxi- 
mately 45 ø and extending to a depth of almost 700 km under the trench. The 
zone is anomalous in that the attenuation of seismic waves is low and seismic 
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velocities are high relative to mantle material at similar depth elsewhere. The 
anomalous material is interpreted •o be a subduc•ed slab of surface material 
•ha• maintains i•s physical integrity to depths in excess of 600 kin. Similar 
anomalous zones are associated wi•h almost all deep sea •renches, and •herefore 
a sufficien• system of sinks is proposed. 

Geophysical interpretations leading to •he concep• of sea floor spreading a• 
mid-ocean ridges and convergence a• •renches can be integrated into a large- 
scale kinematic model of •he earth, generally called •he New Global Tectonics 
[Isa&s et al., 1968]. This model represents •he surface of •he earth as a finite 
number of 'pla•es' whose boundaries are outlined by seismically active areas 
(ridges and •renches). Figure 1 shows •he plan form of the six larges• plates 
[Le Pichon, 1968] superimposed on a map of earthquake epicenters for •he period 
1961-1967. The pla•es are assumed 6o be abou• 100 km thick and •hus include 
bo•h crus• and uppermos• mantle. Continents drif• as a resul• of •heir being 
embedded in a moving pla•e. The plate material or lithosphere is considered •o 
have 'significan• strength,' which implies tha• it is relatively free of internal 
deformation as i• moves from ridge to •rench. The excellen• 'fit' of •he presen• 
coastslines of Sou•h America and Africa [Bullard et al., 1965.] are evidence of 
this strength. The plates mus• overlie a layer capable of fluidlike flow or creep 
•ha• balances •he mass flux implied by •he plate mo•ion. This layer, the 
as•henosphere, mus• ex•end •o depths in excess of 600 km in •he viciniW of the 
trenches to accommodate •he subduc•ed lithosphere. The nature of •he re•urn 
flow in •he asthenosphere has not been determined by geophysical observations. 
Figure 2 is a simplified cross section from •he A•lan•ic ridge •o •he Eas• Pacific 
rise, which illustrates 6he main elements of •he new global tectonic model. 

Another class of geophysical observations, those of surface heat flow, also 
provides impor•an• evidence of •he state of •he crus• and upper man•le. Mos• 
of the hea• flowing •o the surface of •he earth today is due to energy released 
by the radioactive elements uranium, •horium, and potassium [Simmons and 
Roy, 1969]. These elements have been concentrated in •he crus•, especially in 
the •hicker continental crust. The exact concentrations of radiogenic elements 
are no• known, bu• some estimates indicate •ha• continental crus• contains up 
•o 10 times more hea• sources than oceanic crust. I• is therefore surprising •o 
find tha• globally averaged continental hea• flow differs insignificantly from the 
mean oceanic value of 1.5 cal cm -• see -• [Von Herzen and Lee, 1969]. The 
classical interpretation of •his observation is •ha• •he excess continental sources 
are compensated by a depletion a• depth [Bullard, 1952]. MacDonald [1963] 
shows •ha6 for a s•a•ic manfie •he hea• flow data and distribution of hea• sources 

imply the existence of bo•h vertical and horizontal •empera•ure gradients. If 
one assumes •ha• •he as•henosphere is capable of fluidlike flow, •here is a con- 
6radiction in using a s•a•ic model for calculations of •hermal s•ruc•ure, since 
horizontal gradients will always force mo•ions •ha• are capable of advecting 
hea•. I6 mus• be kept in mind •hat •he equaliW of hea• flow holds only for 
global averages. Averages over areas of 6he order of 10 • km • can resul• in hea• 
flow values •ha• differ from •he global mean by as much as a factor of 2 [Sim- 
mons and Roy, 1969; Horai and Uyeda, 1969]. 
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The new global tectonics and the heat flow data give rise to many new 
questions as old ones are resolved. Two fundamental questions are (1) What is 
the nature of the flow in the asthenosphere implied by the moving lithospheric 
plates? and (2) What is the dynamics underlying the lithosphere-asthenosphere 
system? Furthermore, if the motions in the asthenosphere are capable of advect- 
ing significant heat, then these motions must be considered in any investigation 
of the earth's thermal structure. 

Clearly there is need for new models of the earth that include mass trans- 
l•ort below the lithosphere. Direct measurement of this transport does not 
seem feasible with present geophysical techniques because the velocities involved 
are of the order of centimeters per year. A presently viable approach is mathe- 
matical modeling of the lithosphere-asthenosphere system. Models would serve 
at least three principal purposes: (1) exploration of mechanisms capable of 
'breaking up' large continental masses such as the once contiguous South 
America-Africa complex, (2) provision of a basis for understanding present-day 
motions and dynamics of the asthenosphere, and (3) relation of mass transport 
in the asthenosphere to some geophysically measurable property of the upper 
mantle. 

The models considered are, in geologic terms, very oversimplified. This 
results from the limitations imposed by the formulation of tractable mathematical 
problems. Simplicity has its virtues. It leads to solutions that can be confirmed 
by alternate mathematical techniques or by comparing results with solutions 
of similar problems already in the literature. Such checks are especially impor- 
tant in the case of numerical solutions whose validity is often difficult to esti- 
mate a priori. In the case of complex models it may be impossible to effect 
checks that lead to confidence in the results. Furthermore, it may well be that, 
unless simpler models are first understood, complex cases will not be interpretable 
in terms of the contribution to the overall flow that each source of motion pro- 
vides. It seems necessary, and perhaps even desirable, to consider relatively 
simple model problems at the outset. 

It is well known that a horizontal layer of fluid heated from below becomes 
unstable and that convection cells appear when the vertical temperature gradient 
exceeds a critical value [Rayleigh, 1916]. The first group of models consider the 
asthenosphere driven by a supercritical temperature gradient. The geothermal 
gradient in the upper mantle may be supercritical [Knopo#, 1967], and it is 
important to understand the consequences of such a possibility. 

The nonuniform distribution of radiogenic heat sources in the lithosphere 
suggests the existence of horizontal temperature gradients in the asthenosphere. 
The dynamic effect of these gradients is considered in a second series of model 
problems. The models investigate the role of horizontal gradients as a principal 
source of motion or as modifiers of flows driven primarily by unstable vertical 
gradients. 

A third class of model problems considers the finite-amplitude effects of flow 
t. hrough a phase boundary. Phase changes are thought to occur at various depths 
in the mantle .[Anderson, 1970; Ahrens and Syono, 1967; Birch, 1952], and it is 
of interest to ascertain their effect on motions driven by other energy sources. 
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A finite-amplitude theory would also relate vertical velocities to variations in 
the depth of the phase boundary. Such variations in depth may be detectable 
by seismic techniques and thus may provide an indirect method of estimat, ing 
mass transport in the asthenosphere. 

All the above models consider only the asthenosphere and do not include 
any explicit coupling to the lithosphere. Clearly, it is desirable to consider 
model problems that include the moving lithosphere and implied mass flux. A 
final class of model problems, their geometry motivated by Figure 2, consider 
the coupling of the two layers. These models include the effect of horizontal 
and vertical temperature gradients in conjunction with the subducted slab of 
lithospheric material, which is considered to be denser than the surrounding 
mantle [Turcotte and Schubert, 1971; Minear and Toksbz, 1970; McKenzie, 
1•]. 

Many assumptions and simplifications, common to all model problems, are 
required to obtain a tractable set of governing equations. The degree of con- 
fidence with which certain terms can be neglected varies. In some cases, formal 
dimensional arguments clearly show that the neglect of a given term will not 
affect the basic balance of forces in the asthenosphere. Other assumptions are 
based on heuristic arguments and thus reflect varying degrees of a priori, sub- 
jective interpretation. The first section of this study is a statement of these 
assumptions and simplifications, and gives the basis on which they are made. 
This section is extremely important in that it defines the model equations and 
thus their limitations in representing the physical problem that motivates the 
model problems. 

The later sections contain the formulation and solution of the model prob- 
lems considered. The first group of models are driven solely by unstable vertical 
temperature gradients (Rayleigh-Benard convection) and are found to be inade- 
quate as the cause of lithospheric motion. The main objections are (1) the 
stresses at the base of the lithosphere are periodic in space, with period smaller 
than typical plate dimensions, and therefore need not result in a net force away 
from a center of spreading; (2) the periodic nature of the flow does not allow 
for a net mass transport from trench to ridge in the asthenosphere; and (3) the 
time required by the cells to reach significant amplitude may be of the order 
of the age of the earth. 

A second class of problems is considered in which the combined role of 
horizontal and vertical temperature gradients is investigated. Horizontal tem- 
perature gradients can modify the Rayleigh-Benard cells by modulating their 
amplitude and thus break the periodicity constraint. This alleviates the objec- 
tion regarding the stresses on the base of the lithosphere. The analysis suggests 
that the combined effect of both horizontal and vertical temperature gradients 
may provide a mechanism for the breakup of large continental masses (South 
America-Africa), whereas the resulting smaller continents are stable to further 
breakup. These models do not satisfy the asthenosphere mass transport criteria 
and therefore must be modified once spreading has proceeded to the point of 
creating subduction zones. 

The role of phase changes is next considered. The finite-amplitude model 
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presented in this study is in good agreement with the linear theory [Schubert 
anld Turcotte, 1971] when su•ciently small amplitudes are considered. It is 
found that a phase change having the properties of the olivine-spinel transi- 
tion is destabilizing and results in increased convective amplitude. The finite- 
amplitude theory also suggests that motions in the asthenosphere result in sig- 
nificant changes in the depth of the phase boundary, the changes being of the 
order of tens of kilometers. 

A final class of problems considers both the asthenosphere and a moving 
lithosphere with the implied mass fluxes into (at trenches) and out of (at 
ridges) the asthenosphere. These models reflect the geometry of Figure 2. The 
principal conclusions from the coupled lithosphere-asthenosphere models are 
(1) convection resulting from horizontal and/or vertical temperature gradients 
is an inefficient mechanism for driving the lithospheric plates; and (2) if present 
estimates of the negative buoyancy of the downgoing slab are included as a 
driving mechanism, lithosphere velocities of the order of 1-10 cm yr -x result. 

The final section of this study summarizes the principal conclusions drawn 
from the model problems and relates them to geophysical and geologic observa- 
tions. The most important conclusion is the primacy of the role of the down- 
going lithospheric slabs and the mass flux they imply. It is found that the 
negative buoyancy of the slabs is the only mechanism among those considered 
that results in reasonable lithospheric velocities. Even if the negative buoyancy 
has been overestimated, the moving lithosphere and downgoing slabs impose 
velocity boundary conditions that cannot be ignored in the investigation of 
present day sea floor spreading dynamics. 

The model problems suggest the following two-stage interpretation of the 
lithosphere-asthenosphere system. The original breakup of a large continental 
mass is effected by stresses generated by flows in the asthenosphere resulting 
from horizontal and vertical temperature gradients. This stage is relatively 
inefficient and may or may not result in significant spreading. Many continental- 
scale linear features may be records of frustrated spreading attempts. If the 
spreading exceeds a critical length, surface material is subducted and a new 
element is added to the dynamics, the negative buoyancy of the subducted mate- 
rial. This second stage is very e•cient, and thus a period of rapid and irreversible 
spreading follows. The process is one of finite-amplitude instability of the 
lithosphere, in which the horizontal and vertical temperature gradients provide 
the finite perturbations. 

2. BASIC ASSUMPTIONS AND SIMPLIFICATIONS 

The assumptions and simplifications presented in this section, which result 
in a tractable set of governing equations, provide a basis for judging the relevance 
of the model problems considered in this study. One seeks to generate models 
sufficiently simple to be solvable but which retain the main elements of the 
dynamics of sea floor spreading. 

a. NewtonJan fluid. The appropriate constitutive equation relating the 
stress tensor to the rate of strain in the mantle is not known when long time 
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and space scales are considered. The simplest relationship is t;ha.t of a Newtonian 
fluid in which the stress is a linear function of the rate of strain. Whether or 

no• a material is Newtonian can only be established experimentally, since it is 
not possible •o derive the constit;utive relation from any ma. croscopic properties 
of the fluid. 

Many authors [Weertman., 1970; Berg, 1969; Orowan, 1965; Elsasser, 1963] 
have suggested nonlinear relationships of stress versus ra•e of s•rain for •he 
mantle. Such suggestions are in par• motivated by experimental evidence •ha• 
many materials are non-Newtonian at rates of s•rain as small as 10 -• sec -x. 
Such ra•es of s•rain are s•ill very rapid compared •o estimates in •he man•le 
of 10 -x• sec -x and •hus do not necessarily imply a non-New•onian mantle [Run- 
corn, 1969]. The exact cons•i•utive relation appropriate for mantle materials 
may be very complex ye• representable with sufficien• accuracy by an apparen• 
or equivalen• NewtonJan viscosity. The use of an apparent viscosity in geophysical 
problems is no• wi•hou• successful precedent. In the ocean the primary dissipa- 
tion mechanism for large-scale flows is probably smaller-scale eddies. Nonethe- 
less, •he use of an apparen• or eddy viscosity has been extremely useful in under- 
s•anding the large-scale circulation. 

Estimates of •he apparent viscosity of •he mantle are obtained from various 
sources. Using a uniform viscosity model, Haskell [1935, 1936] determined a 
man•le viscosity of 10 • poises from •he analysis of the isostatic rebound of 
Fennoscandia after •he retrea• of Pleistocene glaciers. A similar study of the 
rebound of Lake Bonneville, which drained on a very short •ime scale, de•er- 
mines a value of 10 ax poises [Crittenden, 1963]. The limited areal ex•en• of 
•hese s•udies suggests •ha• the results may be representative of only •he upper- 
most mant;le. McConnell [1965, 1968] and Artyushkov [1967, 1971] consider 
rebound da•a. as a function of waveleng4h and, taking in•o account •he non- 
hydrostatic shape of the earth, •hey determine viscosity as a function of depth. 
McConnell suggests •hat •he value of 10 a poises required by the rebound data 
is restricted •o •he uppermos• man•le and •ha• a• greater depth viscosity increases 
•o values of •he order of 10 •4 poises. 

The use of •he earth's nonhydrostatic equatorial bulge in conjunction with 
•he •idal decelera•ion of •he earth's rotation •o determine man•le viscosity 
requires tha• •he equatorial bulge be large compared •o o•her departures from 
a hydrostatic shape. Munk and MacDonald [1960a, b] a•ribute •he excess 
equatorial bulge to •he long relaxation •ime of the earth's shape to rotational 
decelera•ion. Such an explanation results in a. man•le viscosity of 7.9 x 10 •5 
poises [MacDonald, 1966]. Goldreich and Toomre [1969] have subsequently 
shown •hat •he equatorial bulge is no• anomalously large compared •o o•her 
nonhydrostatic components of •he earth's shape and •hus seriously question •he 
interpretation of. Munk and MacDonald. 

Dicke [1966, 1969] and O'Connell [1971] use an entirely differen• approach. 
They use historical eclipse da•a •o obtain high-precision information abou• the 
non•idal changes in the earth's ro•ation. This change in rate of rotation is in•er- 
preyed as arising from changes in •he earth's momen• of inertia, which resul• 
from •he noninstantaneous isostatic adjustmen• of ocean basins •o Pleistocene 
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glacier melt w•ter. The time scale of ocean basin adjustmen• suggests • uniform 
mantle viscosity of the order of 10 •e poises. 

For the present study the viscosity is •ssumed to be New•onian and uniform 
over the domain of calculation. This choice ignores changes with depth and also 
•ny possible coupling of the viscosity to the temperature field. The nonlinear 
coupling of viscosity to temperature in a fluid is an exceedingly difficult mathe- 
matical problem and represents • major ar, ea of study in itself [Torrance and 
Turcotte, 1971]. The choice of a uniform New•onian viscosity is justified in an 
operational sense; i• leads to trac•able model equations, which m•y or may no• 
have to be modified as •he understanding of the theological state of the mantle 
increases. Again, an an•!ogy with the development of oceanography guides •he 
approach used in this study. The ocean is a stratified fluid. Despite their obvious 
limitations, early homogeneous ocean models resulted in a quantum increase 
in the understanding of oceanic circulation •nd also provided the basis for more 
sophisticated models. In a similar sense, the uniform viscosity problems are a•. 
worst • necessary first s•ep in the development of more complex models of •he 
asthenosphere. 

The role of •he thermometric conductivity of • material is similar to tha• 
of viscosity in that it determines the s•ructure of the governing equations •nd 
measures the rate of diffusion. In this study the coefficient of thermometric con- 
ductivity • is considered uniform. Again, formal arguments supporting this 
choice are not possible, and one is guided by •he same philosophy tha• was used 
in assuming a uniform viscosity. A recent experimental study of the total thermal 
conductivity (lattice plus radiative) of Several important earth materials in 
5he temperature range 500ø-1900øK results in estimates of a relatively consSan5 
K of the order of 10 -2 cm 2 sec -x [Schatz and Simmons, 1972]. Turcotte and 
Oxburgh [1972] give a review of the behavior of K in 5he man•;le and sugges5 
a similar value. 

b. Boussinesq approximation. The Boussinesq approximation involves the 
neglect of variations in density from a constant value in all terms of the equa- 
tions of motion except when the density variations are multiplied by gravity 
(the buoyancy term). The approximation is justified if •he variations are small 
compared with the mean density of the fluid. 

The dynamically important variations in density, aside from •he effect 
of phase changes, can be written as a function of the •emperature alone: 

where 

p = po[1 -]--a(To- T)] 

a coefficient of expansion. 
T temperature. 
po density at reference temperature To. 

We do not mean to impl• by this equation of state that density does not increase 
with depth. The effect of pressure on density is ignored in that it does not enter 
the dynamics of the system. In order that po replace p in all terms except the 
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buoyancy •erm, i• is required that ,. (To - T) << 1. Using. = 4 x 10-•øC -x 
[McKenzie, 1•6•] and a, maximum •empera•ure variation of 1000øC gives 

a(To- T) <_ 4 X 10 -• 

which is sufficient to justify the Boussinesq approximation. 
c. Compressibility and dissipation. The velocity in the asthenosphere is 

sufficiently small so that the pressure can be considered hydrostatic, and thus 
the change in entropy can be written: 

ds = C•, dT/T q- ga dz 

and the thermodynamic equation becomes 

•T/•t q- u •T/•x q- w(•T/Oz q- gaT/C•,) = K •2 T q- H/pC•, q- 

where 

C• specific heat at constant pressure. 
g gravity. 
K thermometric conductivity, assumed constant. 

H heat added by radiogenic sources. 
ß heat added by viscous dissipation. 

g•T/C•, adiabatic lapse rate. 

and where • is the coefficient of expansion, and the Z-axis points upward. The 
viscous dissipation ß is order (gU2/D2), where 

g viscosity coefficient. 
U typical velocity scale. 
D typical length scale. 

The importance of the dissipation term can be estimated by the ratio of the 
dissipation term and the thermal diffusion term: 

where 

Dissipation • (u/pC•)(U•'/D 
Diffusion 

•he kinematic viscosity;, = g/p. 
typical temperature scale. 

The parameters are not known exactly, but the ratio may be as large as order 
1. This indicates that the role of dissipation is not negligible, especially in models 
driven primarily by temperature gradients. Despite this estimate, the heat of 
dissipation will be neglected in the thermodynamic equation. At a later date 
it can be added to models of particular geophysical interest. In the case of models 
not driven primarily by thermal gradients, the neglect of dissipation should have 
little effect on the velocity field. Nonetheless, even in these cases it would be 
interesting to include dissipation, since it will provide local heating at the base 
of the lithosphere, which may help explain the distribution of volcanism. 
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One can similarly estimate the importance of compressibility by considering 
the ratio of the adiabatic gradient to the total vertical temperature gradient: 

Compressibility _ gaT/C•10 • X 4 X 10 -• X 10 • X 10 -• = 0.2 
Vertical gradient - OT/Oz • 10s/5 X 10 • 

when the depth is assumed to be about 500 km. 
This estimate indicates that to a first approximation the effect of com- 

pressibility can be ignored. This is true if one considers that the dynamically 
important quantity is the difference between the geothermal and adiabatic 
temperature gradients, and it is redundant to include the adiabatic gradient 
when the geothermal gradient is not well known. Figure 3 shows the adiabatic 
geotherm [Verhoogen, 1951] and a calculated geothermal gradient for a non- 
conveering earth of chondritic composition [MacDonald, 1963]. This figure 
supports the contention that the effect of compressibility is small compared with 
a reasonable vertical temperature scale. 

d. Two-dimensionality. All models considered are two-dimensional. In 
terms of the dynamics of sea floor spreading, the most important components 
of asthenosphere velocity lie in the same plane as the spreading and subduction 
velocity vectors of the lithosphere. It is these components that must balance 
the mass flux implied by the moving lithosphere and must also control the overall 
dynamic influence of the asthenosphere on the lithosphere. For this reason, and 
because the system can be considered nonrotating (as will be seen), two- 
dimensional models will be capable of resolving the basic dynamics of the 
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Fig. 3. Adiabatic [after Verhoogen, 1951] and chondritic [after MacDonald, 1963] 
temperature gradients. 
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lithosphere-asthenosphere system. The implied restriction that cellular convec- 
tion be in the form of two-dimensional rolls is consistent with the assumption 
that the properties of the fluid are uniform. 

e. Cartesian coordinate system. The natural coordinate system for the 
mantle is spherical, but a Cartesian coordinate system is easier. In order to 
ignore sphericity one must require that 

cos q•o • 1 D/R << I 
cos q) 

where 

D 

R 

•o 

depth of fluid. 
radius of the earth. 

latitude of any point in domain. 
reference latitude within domain. 

If the depths considered do not greatly exceed 1000 km, the first constraint is 
at least weakly satisfied. The second requirement, although not formally satis- 
fied, will result only in geometric distortions that do not affect the balance of 
forces in the system. 

•. Nonrotating system. The relative importance of the Coriolis force 
can be estimated by comparing it with the viscous term in the momentum equa- 
tion. 

viscous •,U/D •' •, 
Coriolis - 29U - 29D • 

= Ekman number = E 

where 2.fl is twice the earth's angular velocity, and D is the typical length scale. 
Even if distances of the order of 10,000 km are considered, the Ekman number 
is 107 . Further confirmation of the insignificance of rotation in mantle problems 
comes from considering the effect of rotation on Rayleigh-Benard convection. 
For rotation to have any effect on convection, the Taylor number (49'2D4/•) 
must be greater than order 1 [Chandrasekhar, 1961]. We find that 

Taylor number = 1/E 2 • 10 -•4 

Clearly, the neglect of rotation is the best of the simplifications required for 
this study. 

The fluid-dynamic equations in Cartesian coordinates governing a system 
that is (1) Newtonian, (2) Boussinesq, (3) incompressible and nondissipative, 
(4) two-dimensional, and (5) non-rotating are 
The momentum equation 

where 

Dq/Dt = 1/po V'p q- •, •2q - ga(To - T)I• 

velocity vector; q = ul q-wJ•. 
pressure. 

kinematic viscosity. 

(1) 
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and where p0 is density at reference temperature To, T is temperature, g is 
gravity, • is the coefficient of thermal expansion, and 

D/Dt = o/ot q- q. V' 

v = O/Ox + O/Oz 

v = o/ox + o/Oz 

The continuity equation 

The thermal equation 

(2) 

DT/Dt = KV2T + H/poC• (3) 

where • is thermometric conductivity, C• is specific heat, and H represents 
radiogenic heat sources. 

The equation of state 

p = po[1 q-a(To- T)] (4) 

For a more detailed discussion of equations 1-4, see Ch.a,ndrasekhar [1961] 
and McKenzie [ 1968]. 

3. ROLE OF VERTICAL TEMPERATURE GRADIENTS 

Both mathematical solutions and experimental evidence indicate that a 
fluid layer heated from below is quiescent until the heat flow exceeds a critical 
value, at which time cellular convection begins. Such cellular motions (Rayleigh- 
Benard convection) have long been contemplated as a possible driving mecha- 
nism of the surface plates [Holmes, 1928]. More recent studies [Torrance and 
Turcotte, 1971] have attempted to provide a formal basis for the general concept 
that sea floor spreading is driven by the energy stored in unstable vertical 
temperature gradients. It is therefore appropriate to begin the systematic 
search for viable mechanisms by considering Rayleigh-Benard convection. 

Finite-amplitude solutions for a. fluid layer heated from below can be 
obtained analytically [Malkus and ¾eronis, 1958; Kuo, 1961]. A simple finite- 
amplitude theory, similar in most respects to that of Malkus and Veronis, is 
reviewed; the theory illustrates some of the characteristics of Rayleigh-Benard 
convection. This development also defines the notation and the nondimensionali- 
zation used throughout this study. 

Consider the problem of a horizontally infinite layer of fluid heated from 
below, as shown in Figure 4. The equations governing the system are (1-4) of the 
previous section. These equations are nondimensionalized by 
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Fig. 4. Rayleigh-Benard convection model. 

•7 

T = To-J- AT O' 

P = Poo- pogDZ' d- po(K/D)2P ' 

where AT is the temperature difference between z' - 0 and z' - 1, Poo is an 
arbitrary constant, and po is the density at T - To. 

If a supercritical layer of fluid is randomly perturbed, then once Rayleigh- 
Benard convection reaches small but finite amplitude, the subsequent time 
evolution involves only a monotonic growth of the amplitude to its steady 
state value, with no changes in the geometry of the flow. For this reason, 
steady solutions are an accurate description of the geometry of fife flow during 
the period of growth; they also provide a measure of the final equilibrated 
amplitude. This suggests that steady solutions are sufficient to illustrate several 
serious objections to Rayleigh-Benard convection as the primary mechanism 
driving sea floor spreading. Thus, for the moment we shall consider the steady 
problem and shall discuss the time scale for the evolution of the amplitude 
separately. The dimensionless equations, after dropping primes, become 

q-Vq - - Vp + •q + •R•of (5) 

v-q = o (7) 
where 

• = v/K the Prandtl number 

Ra = ga ATD a the Rayleigh number 
A final simplification is made in the choice oœ the dynamic boundary 

condition. Clearly, the vertical velocity must vanish at z - 0 and z - 1. 
Rather than consider u - 0 on horizontal boundaries (no-slip condition), follow- 
ing Rayleigh, we shall require that 3u/3z - 0 on z - 0 and z - 1. This no-stress 
or "free" boundary condition simplifies the analysis without significantly chang- 
ing the results. The complete boundary conditions are 
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w= wzz =0 0=0 at z= 1 

(subscripts x or z denote partial differentiation) and 

W=Wzz=O 0= 1 at z--0 

The boundary condition on u has been transformed into a condition on w by 
using the continuity equation 7. 

The nonlinear terms in (5) and (6) require that the analysis be restricted to 
small amplitudes in order that, the nonlinearkies can be ignored to the lowest 
order in some small paramenter e, which is a measure of the amplitude. Let 
ß - (R• - Rc)•/2/Rc, where Rc is the critical Rayleigh number, which will be 
determined by the analysis. The dependent variables can be expanded in an 
asymptotic series in •: 

q = qo -+- eql -+- e"q,. -+- e3q3 -+- ''' 

and, from the definition of e, 

Substitution of (8) into (5) through (7) results in a lowest-order problem: 

qo. Vqo = -Vpo + aV•qo + 

qo. V0o = •0o 

V'qo • 0 

The boundary conditions at this order are 

(Sa) 

(sb) 

(Sc) 

(8d) 

Wo = Wo• = 0o = 0 z = 1 

Wo ---- Wo•, = 0, 0o = 1 z = 0 

The solution qo = 0, 0o = (1 -- z) satisfies all boundary conditions and represents 
a purely conductive state. It is this state of quiescence whose stability we proceed 
to investigate. The order e problem is governed by 

W 1 000/OZ = •201 (10b) 

V'ql = 0 (10c) 

The boundaw condkions at this order are 

Wl --- Wlzz ---- O 1 ---- 0 Z = O, 1 

By using the operator f•'V x V x on equation 10a, U 1 and pl are eliminated' 

}•'V X V X (--VPl -+- •V"q• -{- o'R•01l•) - -o'R• 09'01 OX 2 ffV4Wl = 0 (11) 
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If we eliminate 0• between (11) and (10b), 

•2•(Wl) = O'•OWl -- o'R e 0 2 Wl/0X 2 "-- 0 (12) 
This equation has a solution, 

w• = (A cos mx+ B sin tax)sin na'z (13) 

where A and B are constants, provided that 

which defines a neutral curve of R, versus m for each n such that the fluid is 
stable for R• < R, and unstable if R• > R,. The most unstable mode corre- 
spondston- 1, m - m,- •r/(2) •/2 for whichR - 657.5 

Using equations 10c and 11, we obtain u• and 0• from w•.: 

ux = -½/m)(A sin mx- B cos tax) cos •rz (14) 

0• = [1/(m 2 q- r2)](A cos mx q- B sin tax)sin rZ (15) 
The order • problem resolves the structure of the flow when R• > R, but does 
not determine the amplitude coefficients A and B. The amplitude is obtained 
by considering higher order in •. 

Using the operator fc-V x •' x on the •2 momentum equation, we find 

•4w2 q- •Rc 0202 02 02 - Ox• (16) 
The remaining equations at order •2 are 

ql' V01 + W2 t•00/(•Z = •202 (17a) 

V.q•. = 0 (17b) 

with boundary conditions 

239 

w2 = w2• = 0• = 0 z = 0,'1 

It should be noted that the nonlinear terms in (16) and (17a) are products 
of lower-order solutions and thus are already determined. The asymptotic 
expansion of the dependent variables has reduced the nonlinear equations to a 
tractable se• of linear equations. 

Evaluating the nonlinear terms, we find that (16) and (17) become 

aV•w• + aR, O•/Ox • 0• = 0 (18a) 

V•O• + w• = [r/(m • + r•)](A • + B •) sin •z cos rz (18b) 

V'q• = 0 (18c) 

Eliminating 0• between (18a) and (18b) gives 

œ (w•) = 0 (19) 

with œ as in (12). 
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The equation and boundary conditions for w2 are identical to those governing 
w• (see equation 12), and thus we can choose w2 = 0 without loss of generality. 
This is equivalent to a normalization condition requiring that all solutions to 
the completely homogeneous problem for w be included in w•. The complete 
solution to order e• is 

w•. = o (•Oa) 

u•. = o (•ob) 
(A" + B") 

0,. = -8•r(m: + d) sin 2•rz (20c) 
The constants A and B are still unresolved, and one must again proceed 

to the next order in e. The ea equations are 

aV wa + arc 

(21a) 

,. 800 80,. 80• 80,. 80• (2lb) V o, - w, -•- = u• '•T + u,. -a-J-x + w• '•z + w,. Oz 
V'q, = 0 (21c) 

with boundary conditions w, = wa,, = 0, = 0 at z = 0, 1. Evallmting the nonlinear 
terms on the right-hand side and eliminating 0a between (21a) and (21b), we can 
state the problem in terms of wa alone: 

œ(wa) = -a(m" q- •r")*(A cos mx q- B sin mx) sin •rz (22) 
q- [a/8 (m" q- •:")"](A" q- B")(A cos mx. q- B sin mx)(sin •rz - sin 3•rz) 
The inhomogeneous terms proportional to' (sin mx sin ,rz) and (cos mx 

sin ,r z) are solutions of the homogeneous problem satisfying the boundary con- 
ditions. These terms, if not constrained, will give rise to a secular term (in x), 
rendering our original expansion of w invalid. The necessary constraint deter- 
mines the amplitude of the convective cells. The secularity is removed if 

[(m' q- •r")2/8](A" q- B") - (m" q- •r") a = 0 (23a) 
or 

A" + B" = 8(m" + •r") 
At this point it is convenient to redefine the amplitude coefficients. Let 

Re • = A q- iB 

In this notation the order e solution (13) becomes 

(23b) 

(24) 

w• = Re [Re •(m•+•)] sin •rz 

where R is the amplitude and • is the phase of the order e solution. 
(25) 
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The amplitude equation 23b becomes simply 

R = [S(m •' q-•r2)] •/2 = 10.88 [m = mc = •r/(2) •/21 (26) 

and q• is an undet•ermined constant. The finit•e-amplkude solution for w is 

w = e Re {10.88 exp [i(mcx q- q•)]} sin •rz q- 0(e 2) (27) 

The order e a problem t•hus determines t•he amplit•ude of the cellular con- 
vectAon whose structure is defined by the order ß problem. The undetermincd 
phase • of the solution just means that a horizontally infinit•e layer of fluid 
has no mechanism that det•ermines where the cells reside in x space. 

Had we not• rest•ricted our at•tention to the steady solution, •ime would have 
been nondimensionalized by 

t= (DV)t' 

The amplitude is found to develop on a slow 0(• 2) time scale [$eqe•, 1060], 
and the resulting amplitude equation is 

where 

(dR/dr)(r) = R(,) - R(.)a[S(m • + •r•')] -• (28) 

r = (m" q- •r •) e•[(rl(1 q- (r)]t' (29) 

The time scale depends on the amplitude of the motion, and Knopo# [1060] 
has argued that velocities of the order of centimet•ers per year imply a "growth" 
time of the order of 1 b.y. 

The solution (27) cannot be valid for all ß. An important question is for 
what range of .ß is (27), which represents steady, •wo-dimensional rolls, valid. 
If ß is vanishingly small, the fluid is not truly Boussinesq, and •he plan form is 
hexagonal rather than in the form of rolls (Benard convection). For finite values 
of ß, experiments [Krishnamufti, 1970a, b] indicate •hat• •wo-dimensional rolls 
are the preferred form of convection if e 2 < 12 and , > 1. For •'• > 12, bhe 
flow becomes first three-dimensional 'and finally •ime dependent. Furthermore, 
a theoretical solution by Kuo [1061] indicates that a single-mode analysis, 
which ignores all higher harmonics, is valid up to ß = 1. Thus solution (27) 
is valid for • slightly greater t•han 0 and less than or equal t•o 1. 

Solutions in the range 1 < i • < 12 can be obtained by a two-dimensional 
finke difference analysis. A numerical model that accepts arbitrary temperat. ure 
and velociW boundary conditions has been developed for this study and can 
be used •o investigate two-dimensional convection in •his parameter range. The 
model is written in terms of vor•iciW, s•ream function, and temperature, and 
the appropriate fluid equations are defined below. The vorticiW and stream 
function are related [o •he velociW field by 

q=jxV•k • = Vxq 

where j is the unit vector in +y, •p is the stream function, and r• is vorticit•y. The 
dimensionless governing equations (5) •hrough (7) become 
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O•/Ot = J(•k, 7) - aRa O0/Ox q- aV2• (30a) 

O0/Ot = J(•, 0) + V•0 (30b) 

where J ( ) is •he Jacobian operator O( )/O(x, z). 
The Prand•l number in the mantle is of •he order of 10 •, and thus equa- 

tions (30) can be further simplified by representing the dependent variables by 
an asymptotic series in 1/a. The lowest-order problem becomes 

V•,o = R• 00o/OX (31a) 

OOo/Ot = J(•o, 0o) + V•0o (3lb) 

= . (3c) 

The lowest-order solutions obtained from these equations are valid •o order 
1/• • 1• •4. The fac• tha• this representation ignores •he •erm O•/Ot does no• 
imply •ha• O•/Ot - O, only •ha• •he term is no• impor•an• in •he primary balance 
of •he vor•ici•y equation. The vor•ici•y is, in fac•, a function of •ime, since 
its source •erm OOo/Ox is •ime dependent. 

The numerical model is horizontally finite, and •hus boundary conditions 
mus• be specified on •wo vertical planes. The complete nondimensional boundary 
conditions required to simulate Rayleigh-Benard convection are shown in Figure 
5. The free boundary condition a• z - 0, 1 is replaced by • - 0, since •he 
vor•ici•y is proportional •o Ou/Oz when w is cons•an• on horizontal boundaries. 
The boundary conditions at x - 0 and x - L results from considering an x 
domain extending from x - 0 •o x - 2L with periodic boundary conditions 
a• bo•h these points. Such boundaries simulate an annulus in which the effects 
of sphericity are ignored. The periodic boundary condition a• x - 2L can be 
replaced by a symmetry condition on •e temperature field and antisymmetry 
on •he vo•ici•y field a• x - L. The details.of •he numerical formulation and 
method of solution of (31) are given in •he appendix. 

Figure 6 is an example of a s•eady, numerical solution •o •he Rayleigh- 
Benard problem at Rayleigh number 725. The result is presented in •e•s 
of t, he nondimensional •empera•ure and s•ream-function field. The domain of 
calculation is horizontally finite, and thus only a discrete set of x wave numbers 
exists. The mos• unstable mode in •his se• has a critical Rayleigh number of 
671.3; R• - 725 •hus corresponds to • - 0.08. A measure of •he accuracy of 
•he numerical method of solution can be obtained by comparing •he amplitude 

0=o q,=o 

z .•X 

I 

I•- Fig. 5. Rayleigh-Benard convection model 
I • with boundary conditions in terms of stream 

" function a,nd vorticity. 

I 
X=L 



SEA FLOOR SPREADING 243 

.8 

.6 

.$ 

.2 

.1 

o 

i i 

6.25 

.9 

.8 

.7 

.6 

.5 

.4 

.:5 

.2 

.1 

0.0 

0 6.25 

Fig. 6. Steady, free Rayleigh-Benard convection, Ra- 725. 
Top' temperature, contours from 0 to 0.96. Bottom' stream 

function, contours from 1.1 to --1.1. 

predicted analytically by (27) and the numerical result. Equation 27 predicts 
a nondimensional amplitude of 3.07. The numerical amplitude is 3.00 and repre- 
sents an error of only 2%. The accuracy with which the numerical method 
reproduces analytic results is even better at higher Rayleigh numbers. A test 
case with e • • 1 indicates an accuracy greater than 1%. The agreement be- 
tween analytic and numerical solutions results in a degree of confidence in the 
numerical model that standard numerical error estimates cannot provide. 

The principal conclusions regarding Rayleigh-Benard convection can be 
summarized: (1) for d2 slightly great6r than 0 and less than 12, periodic 
rolls are the preferred form of convection; (2) for d2 > 12, a steady, two- 
dimensional model will not recover experimentally observdd results; (3) the 
aspect ratio of the rolls is very nearly one [we - w/(2)•/a]; (4) the amplitude 
develops on a slow 0(•) time scale. 

The geologic consequences of these conclusions are now considered. The 
aspect ratio of the asthenosphere below a typical plate is of the order of 5 or 
greater, which suggests that the lithosphere is not the upper limb of a single 
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Rayleigh-Benard cell. Therefore, if the plates move as a result of Rayleigh- 
Benard convection, they must be driven by the integrated stress of many cells. 
The net force on a lithospheric plate can be written: 

fo L(t) F ( • ) = •, dx (32) 

where the center of spreading defines x -- 0 and a• is the stress at the base of 
the plate due to convection in the asthenosphere. L(t) is the horizontal dimen- 
sion of the plate in the direction of spreading, which is a function of time. Figure 
2 illustrates the dependence of horizontal dimensions on time. If the two ridges 
are fixed in space, the motion of each plate away from its respective ridge 
implies that the trench migrates to the left, and the plate on the right grows 
while the plate on the left shrinks. 

Since the convective velocities are spatially periodic, ax will also be 
periodic, with wavelength smaller than typical plate dimensions, and thus there 
will exist dimensions L, such that F(t) - 0 when L(t) - L,. Once F(t) - O, 
.L(t) remains L•, since the plate has no inertia when the Prandtl number is 
large. Spreading stops. Figure 7a shows the integrated stress resulting from 
convection versus plate length and indicates that stable lengths will occur 
whenever the plate dimension becomes a multiple of two cell widths. 

The periodic nature of Rayleigh-Benard convection results in a second 
objection. The moving lithosphere implies a net mass transport from trench 
to ridge in the asthenosphere. A periodic flow with half-wavelength smaller 
than the trench to ridge length scale cannot satisfy such a mass transport 
criterion. 

The most damaging property of Rayleigh-Benard convection in terms 
of its being a viable mechanism for driving sea floor spreading is the periodic 
nature of the flow and 'the order I aspect ratio of the cells. Can this objection 
be alleviated if a more realistic convect•ion model were considered, one that 
would include internal heat sources and temperature-dependent fluid properties? 

Tritton .and Zarraga [1967], in a qualitative experimental study of con- 
vection produced by uniform heating throughout the body of a fluid layer, 
observed that at large Rayleigh numbers the distance between rising and 
falling currents was as great as 5 times the depth of the layer. However, a 
preliminary theoretical study of the above experiment by Roberts [1967] and 
a subsequent numerical study by Thirlby [1970] fail to determine any dramatic 
increase in wavelength with increasing Rayleigh number. Also, experimental 
observations'by Hooper [see Thirlby, 1970] do not show convective cell elonga- 
tions on the scale of Tritton and Zarraga. The problem of internal heat sources 
has not yet been d. efinitively resolved, but present understanding suggests that 
such heating will not remove the fundamental objections to convection in the 
present context. 

Theoretical studies of convection with temperature-dependent fluid prop- 
erties by Palm [1960] and Busse [1967] indicate that cells of hexagonal plan 
form may be preferred over two-dimensional rolls even for e order 1. The 
tendency toward hexagonal cells may not be effective in the presence of hori- 
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Fig. ?. Net force as a œuactio• oœ plate length, ('-I- indicates te]•ion, 
-- indicates compression). A {•w cells have been indicated to show phasing. 
(a) Rayleigh-Benard; convection; (b) modulated conv•ction with optimum 

phasing; (c) modulated convection with worst possible phasing. 

zontal temperature gradients such as those existing at the edges of continents 
(section 4). The continental thermal gradients will tend to enhance rolls parallel 
to the continental margins. In any event, the aspe.ct ratio of hexagonal cells 
will be order 1, and thus previous c•nclusion• would still apply. 

4. ROLE OF HORIZONTAL TEMPERATURE GRADIENTS 
It is generally accepted that continental crustal rocks are relatively rich 

in radiogenic heat sources compared with oceanic crustal rocks. Under these 
circumstances one expects that the heat flow at sea will be less than that ob- 
served in continental areas. It is therefore surprising to find that the heat 
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flow through the ocean floor is approximately equal to the mean heat flow 
through continents [Lee and Uyeda, 1965]. One possible explanation is that 
despite the near-surface enrichment oœ the continental crust, the mean com- 
position and therefore the heat production is the same for both continents and 
oceans when a greater depth extent is considered [Bullard, 1952]. This pos- 
sibility suggests that the excess heat•sources in the continental crust are balanced 
by a depletion at depth. 

The effect on the temperature field of concentrating heat sources near 
the surface can be explored by using a steady, one-dimensional heat flow 
equation with the constraint that both temperature and heat flow be uniform 
at the surface z - 0 [Jef]reys, 1962]. Consider the equation 

d • O/dz • -t- Q(z) 0 

where 

t• temperature 
Q radiogenic heat source strength 
K thermal conductivity 

The neglect of horizontal derivatives implies that the horizontal scales in the 
conduction problem are presumed large compared with the depth extent. With z 
increasing downward from z - 0 at the surface, the above equation can be 
integrated, yielding 

• dt•/dz = Q(•) d• -]- Ho 

where H• is independent of z. Since we require constant heat at the surface, 

o • Q(•) d• + Ho = const 
The integral represents the total heat source stren•h in a column, and Ho 
represents the hea.t flow into the base of the column. This equation implies 
that if the heat flowing from the deep interior is constant for all columns (H• 
= cons•), the uniformity of surface heat flow results from 

• Q(•) d• = Qo 
where Q• is a constant for all columns. 

A second integration results in the temperature solution 

•(,) = (1/•) dg Q(•) d• + Hoz/• + •o 

where •o is •he surface temperature. Our main interest is the effect of the hea• 
sources in the crust on the temperature in the asthenosphere, and thus we can 
consider the temperature at a depth zo, below which no significant radiogenic 
heat sources exist. 
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foO t•(zo) = (l/K) d•' Q(•) d• -•- Hozo/K -•- 6o 

Since no significan• heat sources exis• below z•, the upper limi• of integration 
can be replaced by infinity. If we reverse the order of integration and make 
use of •he mean value theorem, the double integral can be written: 

(l/K) d• Q(•) d• = Do/K Q(•) d• = DoQo/K 

where Do is a weighted mean depth of heat generation. The temperature solu- 
tion can now be written in an easier to interpret form: 

•(zo) = Do Qo/K + Hozo/K + 6o 

We can •hus explicitly see the effec• of concentrating •he hea• sources near •he 
surface while requiring uniform •empera•ure and hea• flow a• the surface; i• 
results in a lower temperature a• depth. The geologic implication is tha• the 
distribution of heat sources in the crus• results in relatively colder temperatures 
under continents than at similar depth under ocean basins. This is not a new 
conclusion' MacDonald [1963] considers the two-dimensional, time-dependent 
conduction problem and formally arrives a• the same result. MacDonald's 
results show tha• horizontal •emperature changes may be as large as 100øC a• 
a depth of 100 km. The horizontal length scale over which the temperature 
varies is of •he order of 1000 km. Despite the fac• tha• MacDonald ignores the 
advection of heat in the asthenosphere, his results provide a useful estimate of 
horizontal temperature gradients at the base of the lithosphere (except near 
active ridges where the temperature depends on warm ma(erial intruded into 
the ridge axis). In a mathematical sense the temperature in the lithosphere is 
fully determined by the distribution of radiogenic heat sources and the surface 
temperature and heat flow boundary conditions, and thus it is independent of the 
ignored advection of heat in the asthenosphere. Sclater and Francheteau [1970] 
review recent observations of terrestrial heat flow and also suggest that they are 
indicative of higher temperatures in the upper mantle under ocean basins. For 
present purposes •he two conclusions regarding the thermal state of the man•le 
tha• are importan• are that (1) horizontal temperature gradients exis• in the 
upper mantle, and (2) •hese gradients are such that i• is warmer under ocean 
basins than at similar depth under continents. 

These conclusions sugges• that.the investigation of the role of horizontal 
temperature gradients as sources or modifiers of fluid motions in the. astheno- 
sphere is relevant. A question •ha• can be considered at this time is, Can hori- 
zontal temperature gradients modify Rayleigh-Benard convection to the point 
that some of •he objections raised in the previous section are removed? The 
first model problem of •his section will show •ha• horizontal temperature 
gradients can modulate the amplitude of Rayleigh-Benard convection and thus 
break the periodic nature of •he flow. 

a. Modulated convection. Consider the problem of an infinite layer of 
fluid between two free horizontal boundaries subject to a temperature boundary 



248 FRANK M. IHCHTER 

condition that includes a weak spatial variation on a length scale that is long 
compared with the depth of the fluid. The model and boundary conditions are 
shown in Figure 8. 

Since the spatial dependence of the boundary temperature is on a long x 
scale, order fi compared with the depth of the fluid, a second length scale can 
be introduced as an independent variable X' 

X - 

Then derivatives with respec• to (,he horizontal coordinate are written' 

(33) 

•/• -t- t• o/ox 

The dimensionless, governing equations (5-7) become 

(34) 

(35a) 

(35b) 

(35c) 

(356) 
As in Rayleigh-Benard convection, we must restrict the analysis to small ampli- 
tudes. We define 

. = 
The dependent variables are expanded as before in an asymptotic series in •, 
and this representation is substituted into the governing equations (35). In 
order to extract the appropriate equation for each order in •, a specific choice 
of a and fi in terms of • is required. We choose 

2 

-= • • = • (36) 

This choice is motivated by the fact that it results in a problem in which the 
temperature variations on the bou•d'ary affect the order •e velocity field. This 
is clearly no• a unique choice, bu• the solution resulting from •his choice will 
also show •he effect of considering • < e • and fi < •. 

w:o w,:o 

D 
• X•U 

• • i iiiii iiiiii [11•1111 iiii i ii iii iii ill i • • 
T = To+ o. F(Bx) +/•T W--O Wzz=O 

Fig. 8. Modulated convection model. 



SEA FLOOR SPREADING 249 

The modulated convection problem parallels the Rayleigh-Benard problem 
up to order e -ø, for it is not until this order that the new boundary condition and 
length scale enter the problem. The lowest-order solution is again the purely 
conductive state with no fluid motion. The order { solutions are modified only 
in that the amplitude coefficients A and B now become functions of the long 
space scale. Thus 

Wl = (A(x) cos mx + B(x) sin mx) sin •rz (37) 

Other problems in which convective amplitudes depend on long space scales 
have been studied by Segel [1969] and Newell and Whitehead [1969]. 

If the • problem is stated in terms of w= alone, as before, the nonlinear 
terms can be evaluated and are found to cancel: 

œ(w•) = 0 œ( ) = aV •- aR• O•'/Ox •' (38) 
As a normalization condition we choose w• - 0. The temperature has to satisfy 
an inhomogeneous boundary condition at this order (0• = F(x), z - 0), and 
we find 

2 •--- -- 
[A(x) • + B(x) •] 
õr-• • • sin 2•z -- 

2m 

(m • q_ •r •) (dA/dX sin mx- dB/dX cos tax) 
ß 'sin •rz q- (t - z)F(x) (39a) 

u•. = -•r/m•'(dA/dX cos mx q- dB/dX sin mx) cos •rz (39b) 
The order ea problem stated in terms of wa alone is not homogeneous, since 

the nonlinear terms do not cancel. The equation for wa has the general form 

œ(w.•) = A(x) cos mx sin ,rz q- r(x) sin mx sin 

q- terms in sin mrz, cos nmx, sin nmx (40) 

where n 7 2. As before, t•he necessary condition that A(x) = 0 and r(x) = 0 
leads to amplitude equations for A(x) and B(x). These equations can be written 
in terms of R (x) and •(x), where 

R(x) exp [/•(x)] = A(x) q- iB(x) (41) 

The amplitude equations are 

drk/dX = K/R(x) • (42a) 
where K is an undefined constant, and 

6• •' d•'R/dX •' - 6•'R(x)(dek/dX) •' q- (m •' q- •')•'R(x)[1 q- 

-- (1/8)(m •' q- r•')R(x, a = 0 (42b) 

EquatAon 42 reduces to the amplitude equation for 'pure' Rayleigh-Benard 
convection (23) when F(x) = 0 and A and B are eonstant•s. 

The amplitude equations can be reduced to a simpler form if we restrict 
F(x) to be localized. Since •he fluid is horizontally infinite, we expect that, far 
from the region where the boundary temperat•ure varies, the Rayleigh-Benard 
solution with constant amplitude and wave number m• should be recovered. 
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This implies that K in (42a) can be set to 0. The amplitude is now determined 
by the single equation • 

6•r' d:•R/dX ' q- (m' q- •r')'[1 q- F(x,]R(x, -- (1/8)(m' q- •r')R(x, • = 0 (43) 

The phase • is an undetermined .constant, which implies that F(x) is sufficiently 
smooth on the length scale of the cells so as not to determine the phase of the 
solution. 

For sufficient separation between the scale of x and X, one would expect 
the convective amplitude to depend on the 'local' Rayleigh number Ra[1 + F(x)]. 
The neglect of the differentiated term in the amplitude equations (42) results in 
such a local Rayleigh number approximation. Had we considered the case/• < e 
in our original formulation, the differentiated term would not enter the ampli- 
tude equation at all. This suggests as a rule of thumb for evaluating the effect 
of 'weak' horizontal gradients on Rayleigh-Benard convection the use of a local 
Rayleigh number approximation. 

Equation 43 can be easily solved numerically by using a relaxation technique 
that requires the amplitude far from the boundary temperature variation to be 
that of simple Rayleigh-Benard convection. An example of such a solution is 
shown in Figure 9 for F(x) - sech X. The local Rayleigh number solution is 
also shown and confirms its usefulness as a measure of modulated amplitude. 

The validity of both the asymptotic theory and the restricted set of solu- 
tions considered in the previous discussion can be tested by solving the same 
model problem by means of nmneri½al. techniques. The numerical model' de- 
veloped for this study (see the appendix) accepts arbitrary boundary conditions 
and thus can be used to investigate the model shown in Figure 8. The domain 

It .5 
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Fig. 9. Modulated amplitude Ror• as a function of X 
when F(X) -- sech X. Local Rayleigh number approxi- 

mation shown as dotted curve. 
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of calculation can no longer be horizontally infinite, and therefore periodic 
boundary conditions are imposed on two vertical planes in the fluid. Figure 10 
shows the resulting steady, nondimensional temperature, temperature boundary 
condition, and stream function field over the left half of the complete domain 
for R• - 725. If the •emperature boundary condition is considered symmetric 

1.15 

1.0 

6.25 

I. I I I I I I I I I I I I I I I I I I _1 I I 

Fig. 10. Steady numerical solution to modulated convection problem, 
Ra -- 725. Top' temperature boundary condition at z -- 0. Middle' 
temperature, contours from 0 to 1.15. Bottom' stream function, con- 

tours from --1.8 to 1.8. 
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abou• x - 6.25, then ?,he temperature field is symmetric and the stream func- 
tion is antisymmetric about this point. The amplitude of the cells, as shown by 
•he streamlines, is modulated on the length scale of the boundary temperature 
variations. Despite the limitation imposed by the small separation of scales 
between the boundary temperature variation and the depth of the fluid, numeri- 
cal and analytical results never differ by more than 4% for any X. The small 
separation of the two length scales does induce a slight dependence of the 
wave number on X that is not predicted by the analytical solution (which as- 
sumed a large separation between the •wo length scales). The agreement be- 
tween the analytical and numerical solutions is sufficiently good to argue that 
modulated convection is the physically realizable result of weak, long-scale 
temperature variations on the boundaries of a convecting fluid. 

Modulated convection has the desirable property that the cells and thus 
the resulting stresses (if no-slip boundaries had been considered) are no longer 
periodic. The objection to Rayleigh-Benard convection based on the existence 
of stable plate dimensions can therefore be removed by including horizontal 
temperature variations on the boundaries of the fluid layer. Figure 7b, c shows 
how the modulated amplitude can resul• in net forces for all plate dimensions. 
If •he cells are phased in such a manner ?,hat upwelling is maintained under 
•he ridge axis, net tensional forces are applied to t.he plates on either side of 
the ridge. On the o•her hand, the requirement of a net mass transpor• from 
trench •o ridge in the asthenosphere is not satisfied by this model. The modu- 
lated convection problem need no• be discarded on this basis, for if its role 
is restricted •o generating stresses tha• initiate continental breakup, no mass 
flux requirement arises. By 'breakup' I mean the original splitting of a large 
continent such as South America-Africa as the first stage of sea floor spreading. 
I shall return to this application of the modulated solution. 

There is no a priori reason why the role of horizontal gradients should 
be restricted to modifying flows that result from other sources. It is well known 
that horizontal temperature gradients, however weak, resul• in fluid motions; 
this is in contrast to vertical temperature gradients, which must exceed a 
critical value. The next series of model problems investigates the mo•ion of 
a fluid layer driven primarily by horizon•,al temperature gradients on the bound- 
aries. 

b. Horizontal convection. The role of horizontal temperature gradients 
as the principal source of motion can be investigated by using the same numeri- 
cal model used in the study of .modulated convection. The only modification 
required is that the Rayleigh number based on the vertical temperature dif- 
ference be less than critical. The horizontal temperature gradients in •he body 
of the fluid are generated by considering nonuniform temperatures on the upper 
boundary. 

Figure 11 is an example of horizontal convection (convection driven pri- 
marily by imposed horizontal •emperature gradients). The nondimensional 
temperature at z - 0 is one; the temperature a• z - I varies as a function of x 
as shown in Figure 11. The solution displayed 'is •he steady, nondimensional 
temperature and stream function field for free boundaries and for Rayleigh 
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number equal to 100. As in previous numerical calculations, the temperature 
field is symmetric and the stream function is antisymmetric about x - 12.5; 
x - 0 is a periodic boundary. 

The circulation resulting from the horizontal temperature variation on the 
boundary is counterclockwise, and thus the flow at small depth is from hot to 
cold. This well-known result becomes very important if we recall that earlier 
arguments suggested that the temperature under continents is relatively cold. 
The horizontal temperature gradients in the asthenosphere due to the concen- 
tration of radiogenic material in the continental crust force a flow that, at the 
base of the lithosphere, is from ocean to continent. Such a flow would inhibit 
the breakup of. preexisting continental masses such as South America-Africa 
by resulting in net compressive forces. We shall return to this point after other 
properties of horizontal convection are established. 

A second property of horizontal convection is the aspect ratio of the re- 
sulting cell. In the example shown in Figure 11, the aspect ratio is about three. 
There are three imposed length scales in the problem that conceivably can 
determine the width of the cell. The depth D is one, and the other two (L and l) 
are specified by the temperature on the upper boundary. In Figure 11, l • D 
and L • 11D. A series of numerical experiments were carried out in an effort 
to determine which of the three length scales controls the width of the cell. 
It was found that in the range L • 2D, l _• D, the depth is the determining 
factor. Figure !2 is an example of a steady case where l • D/2, L • 5. The 
temperature is zero at z - 0 and varies as a function of x as shown at z - 1. 
The cell shown in Figure 12 has virtually the same structure as that in Figure 11 
despite different imposed horizontal length scales and basic stratification. Figures 
11 and 12 can therefore be regarded as typical of the structure one would 
expect when L ) 2D and l _• D. These restrictions on the horizontal scales of 
the temperature field are satisfied in the asthenosphere if a depth extent of the 
order of 1000 km is considered. 

The principal properties of horizontal convection that are important to 
the problem of motions in the asthenosphere are (1) the sense of a horizontal 
convection cell is such that at shallow depth the flow is from hot to cold; 
and (2) the width of the cell is approximately 3 times the depth of the fluid 
layer. 

Having gained an understanding of the role of horizontal temperature 
gradients as primary sources of motion or as modifiers of flows driven by other 
sources, we can ask what role they play in the asthenosphere. It is premature 
to consider the horizontal temperature gradients in connection with present-day 
sea floor spreading dynamics, since the problem of net mass transport in the 
asthenosphere has not yet been resolved. For the moment we can only consider 
the role of these gradients in effecting the original breakup of large continental 
masses. 

c. Breakup problem. Many authors (most recently Ichiye [1971] ) have 
commented on the possibility that the horizontal temperature gradients at the 
edges of continents drive flows in the asthenosphere which 'break' the original 
continents by generating net tensional forces. This suggestion is not consistent 
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with the understanding of horizontal convection derived from the previous 
section. It has been shown that if the thermal structure of the earth is such 

that the temperature under continents is relatively cold compared with the 
temperature at similar depths under ocean basins, then the thermally driven 
edge cells subject the continental lithosphere to net compressive forces. A similar 
conclusion regarding the stabilizing effect of edge cells at continental margins 
results from a linear analysis (ignoring heat advection) by Allan et al. [1967]. 
Rather than use horizontal temperature gradients to explain the original breakup 
of large continents , we are faced with the problem of suggesting a mechanism 
capable of overcoming the stablizing effect of these gradients. 

The modulated convection problem suggests a possible mechanism. If at 
some deep level in the mantle the temperature is horizontally uniform, the 
relative coolness under continents results in a locally higher Rayleigh number. 
If the original continental mass is sufficiently large, the edge cells, which have 
an aspect ratio of 3, will not occupy the entire region under the continent. There 
will be room for counterrotating (tension producing) Rayleigh-Benard cells. 
The hope is that a parameter range exists in which the inner Rayleigh-Benard 
cells can overcome the adverse effect of the edge cells. The modulated convec- 
tion problem does not define the desired parameter range because it required 
horizontal temperature variations on a scale that is large compared with the 
depth, which probably is not the case for the asthenosphere. 

There are too many variables to allow for a systematic mapping of the 
complete parameter fields. Thus a limited number of cases were considered, 
and the parameter range was chosen primarily by experience. The solutions are 
obtained using the same numerical model used to investigate modulated con- 
vecfion. The one modification required is a change in the dynamic boundary 
condition at z - 1 from 'free' (Ou/Oz - 0) to 'rigid' (u - 0). The stress, or 
equivalently the vorticity, will no longer be 0 at z - 1, and therefore the net 
force on an overlying plate can be estimated. The presence of a continent is 
modeled by its effect on the temperature boundary condition on the upper 
surface of the fluid layer. 

Figure 13 shows the result for a calculation that considers a continental 
temperature anomaly 4 times the depth scale wide and 20.% of the total vertical 
temperature change in amplitude. The stream function field shown is still in 
the process of spinning up. The time evolution to this time step is (1) horizontal 
convection cell at x - 10.5 spins up first; (2) the Rayleigh-Benard cell under 
the continent follows, since it is in a region of relatively high Rayleigh number; 
and (3) finally, Rayleigh-Benard cells appear in the low Rayleigh number 
region as momentum diffuses away from the horizontal convection cell. 

The stress (measured by the vorticity) on an overlying plate at z - 1 
can be integrated away from the center of the continental temperature anomaly 
and thus provides an estimate of the total force as a function of plate length. 
As shown in Figure 13, the flow results in a net tensional force on the plane 
.of symmetry of the continent if lengths greater than 5 times the depth are 
considered. The total dimensional force is of the order of 10 • dynes (using 
v = 10 •"•, • = 10 -•', and D = 10 8 cgs). 
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This type of model for the initiation of sea floor spreading has both at- 
tractive and troublesome aspects. In its favor is •he fact that it predicts that 
only large continental masses, capable of accommodating the inner, counterrotat- 
ing Rayleigh-Benard cells, are potentially unstable. Smaller continents (fragments 
of the original breakup) would be very s•able, since the horizontal convection 
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cells at their edges would extend under the entire continent and thus insure 
stability. It would be interesting to investigate if the still large Europe-Asia 
complex shows evidence of further breakup. A troublesome aspect is that such 
a model may require a long time to develop, since the existence of tensional 
forces will depend on the Rayleigh-Benard 'spin-up' time. 

The overall conclusion is that, given an appropriate parameter range, the 
stablizing effect of edge cells can be overcome if a sufficiently large continent 
is considered. 

The model problems considered in this section, which suggest a possible 
mechanism for effecting the original breakup of continents, are no longer valid 
once the lithosphere begins to move away from the center of spreading. The 
moving lithosphere requires a new dynamic boundary condition (u :/: 0) 
at the top of the asthenosphere and a mass flux into (at trenches) and out of 
(at the ridge axis) the asthenosphere. The final section of this study will con- 
sider models that include these conditions, but bet•ore proceeding to these I 
shall first consider the dynamic role of mineralogical phase changes in the 
upper mantle. Phase changes act as sources and sinks of both buoyancy and 
heat, and it is important. to understand if their effect on fluid motions is suf- 
ficiently large that it must be included in the formulation of the final model 
problems. 

5. ROLE OF PHASE CHANGES IN THE ASTHENOSPHERE 

Seismic results indicate a series of transitions or 'discontinuities' in the 

mantle that can be interpreted in terms of phase changes in olivine, pyroxene, 
and garnet [Anderson, 1970]. The dynamic role of such phase changes as 
modifiers of fluid motions has been the subject of heuristic arguments for many 
years [K•opol•, 1964; Verhoogen, 1965; Ringwood, 1972]. The effect of a phase 
change on the stability of a layer of fluid heated from below was first studied 
analytically by Busse and Schubert [1971], who used a linearized model. Schu- 
bert and Turcotte [1971] subsequently applied the analysis to the olivine- 
spinel transition in the upper mantle. 

The principal result of the linear analysis by Schubert and Turcotte is 
summarized by a stability diagram for Rayleigh-Benard convection through 
a phase boundary (Figure 14). The parameters are defined: 

Ra Rayleigh number; Ra = (ga A TD3/Kv). 
$ a measure of the density difference between the two phases; 

S = Ap/[(aD/2)(pg/,• - •)]. 
R• Rayleigh number based on energy released by material changing phase; 

R• = ga(Q/pC•)D3/Kv. 

where g, a, •, v, AT, p, and D have the meanings given previously, and 

Ap density difference between the two phases. 
Q heat production (or loss) per unit mass of material changing phase. 
• vertical temperature gradient. 
• slope of Clapeyron curve; 
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Fig. 14. Stability fields for convec- 
tion through a phase boundary [after 

Schubert and Tt•rcotte, 1971]. 

The effect of a given phase change on the stability of the system can be 
estimated by comparing the appropriate point on the family of neutral curves 
to the point S = 0, Ro = 0, which is the critical Rayleigh number (Re) for 
the equivalent single-phase system. The family of neutral curves indicate that 
whenever Ro • 80 the effect of the phase change is destabilizing. For Ro • 80, 
the two-phase system is more stable than a one-phase system, but convection 

through the phase boundary is certainly still possible. The phase boundary will 
appear to be a barrier to vertical motions only if the critical Rayleigh number 
for the two-phase system is greater than the Rayleigh number required for either 
phase to convect alone. Since the depth extent of each phase is less than the 
depth of the system as a whole, the Rayleigh number required for either phase 
to convect separately is always greater than R•rit. The extreme case occurs when 
the phase boundary is at the midpoint of the layer, in which event the Rayleigh 
number required for separate convection is 16R•c•t. 

The analytical linear theory is capable of resolving the neutral curve for 
convection through a phase boundary but cannot determine the amplitude of 
finite solutions. We wish to determine both the dynamic role of a phase change 
and the effect of a velocity field on the local elevation of the phase boundary, 
and therefore a finite-amplitude, nonlinear theory is required. 

Rather than formulate a two-layer model, with each layer representing a 
. 

phase, we shall consider that the pha.se change occurs over a finite transition 
region. This representation results in a continuous density function that is much 
easier to treat mathematically. The model considered is shown in Figure 15. 

T: r(x)+To W= 0 Wzz = 0 

1 
Zo 

2 

Z ,W 

• X,U 

T- To+/•T w--O 
ii ii 

Wzz- 0 

Fig. 15. Model for convection through a phase boundary. 
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0 = (T- ro)/Ar (44) 
then 

p = P111 -- aATO + a•r(•, z)] (45) 
where 

Ap = (P2- Pl)IPl (46) 

and P(x, z) is the fractional concentration of phase 2. If A• << I and , << 1, 
•hen the momentum equation aRer •he Boussinesq approximation becomes 

Dq/Dt = -pD2/plK2•p ' -{- got Af D • Oi• - ApgDS 2 r(x, z)• + p/•V"q (47) 

which can be transformed into a vorticity equation, yielding 

On/Ot =JOP, •) - •rRa O0/Ox + •rR,, or/o• + •v •. (48) 
where Rp = gAt•D3/K•, and a = •/K. Because of the large Prandtl number, 
equation 48 can be approximated by 

v% = R• oo/o• - R• or/o• + 0(l/a) (49) 
The temperature equation must be modified to take into account the energy 

absorbed or released as material changes phase. This heat production can be 
written: 

Q•. = oq•. DF/Dt (50) 
where P is a measure of the concentration of phase 2, and q•. is the heat released 
per unit mass of material changing from phase I to phase 2. 

The nondimensional •emperature equation becomes 

where 

O0/Ot = J(g,, 0- Ro/R•r) 4- Ro/R• or/at (51) 

Ro = got(q•'/C")DS 
The stream function and vorticity are related by 

v• =. (52) 

Equations 48, 51, and 52 are no longer sufficient, since a new dependent 
variable F is now in the problem. Another relationship is required, and it is provided 
by the Clapeyron curve, which specifies the phase boundary in temperature and 
pressure coordinates. If we know the temperature field T(z, z), we can find a 
function Zo(•) such that T[z, Zo•,•] is always on the Clapeyron curve. The function 
Zo•,• can be interpreted as the depth to the phase boundary. If we define the phase 
boundary as the F = 0.5 (50% concentration of each phase) surface, then 
determines the • dependence of r(•, z). The vertical structure of F(•, z) is arbitrary 
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and is chosen so as to provide a transition zone of reasonable thickness. This 
uncertainty in the vertical structure of P(x, z) is not very important in the problem 
we are considering. We can see from (49) that OF/Ox is a source term in a Poisson 
equation, and therefore, as long as the phase transition zone thickness is small 
compared to the total depth of the fluid, the exact vertical structure of F is un- 
important compared to the total change in F across the zone. The same argument 
regarding total source strength versus exact source distribution can be made in 
connection with the temperature equation (51). 

The equations governing a two-phase system are 49, 51, 52, and the Clapeyron 
relation. This set of equations, along with the boundary conditions shown in 
Figure 15, have been solved numerically for two classes of problems: (1) horizontal 
convection driven primarily by temperature variations on the boundaries, and 
(2) Rayleigh-Benard convection. Horizontal convection is the more useful of 
the two in estimating the effect of the phase change on the structure of the resulting 
flow. Horizontal convection has more freedom in its horizontal structure than 
Rayleigh-Benard convection which is limited to a discrete wave-number spectrum 
by the finite horizontal dimension of the domain of calculation. The Rayleigh- 
Benard model on the other hand has the important advantage that it will provide 
an estimate of numerical accuracy when compared •vith analytical results. 

Figure 16 is typical of horizontal convection through a phase boundary. The 
nondimensional temperature and stream function fields are shown, as well as the 
dimensional change in elevation of the F = 0.5 surface (when the depth is dimen- 
sionalized using D = 1000 kin). The temperature boundary conditions are t• -- 1 
at z = 0 and t• ranging from 0 to 0.2 at z = 1, as indicated by the intersection of 
the isotherms with the boundary. The dynamic boundary conditions are w = 0 
and w,, = 0 (free) at z = 0 and z = 1. Periodic boundary conditions are imposed 
at x = 0 and x = 25, which are satisfied by considering the temperature to be 
symmetric and the stream function antisymmetric around x = 12.5. The concen- 
tration function F(x, z) is such that the transition from one phase to another 
occurs over a depth of 0.1D. The constant To must also be specified because 
together with AT it determines the mean depth of the phase boundary. In the 
case shown in Figure 16, To is 1200•C, and the remaining parameters, R•, R•, 
and Ro, have values of 100, 1600, and 24, respectively. The slope of the Clapeyron 
curve (Q•p•p•/ApT) is determined once Ro and R• are specified. A slope of 6•C km -• 
is consistent with the above values of Ro and R•. This slope, which we shall consider 
constant, is approximately the estimated value for the forsterite-spinel transition 
[Anderson, 1970]. 

To get an idea of the effect of the phase change in this parameter range, we 
can compare Figure 16 with Figure 11, which is the same calculation with R• and 
Ro set to 0. The phase change increases the amplitude by a factor of 3, but the 
structure of the solution is unchanged. The increased amplitude when the phase 
change is present is not surprising. The family of neutral curves in Figure 14 
suggest that the case R• = 24, R• = 1600 (S = 2) is more unstable than R• = 0, 
R• = 0. The depth to the phase boundary as measured by the F = 0.5 surface is 
greater in warmer regions of the fluid, which one would expect for all cases with 
positive Clapeyron slope. 
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Figure 17 shows the effect of varying the Rayleigh number on the ampli- 
tude of horizontal convection. The amplitude can be seen to be a linear œunc- 
tion of R•, as one would expect in a forced problem. For comparison, the ampli- 
tude versus R• curve for Ro - 0, R• = 0 is also shown. One can see that the 
effect of the phase change is to increase the amplitude by a factor of about 3. 
In all the cases considered in making the graphs in Figure 17, no effect of 
the phase change on the structure of the resulting flow was observed. The overall 
conclusion is that a phase change in the'parameter range considered increases 
the amplitude by a factor of 3 but does not change the structure of the flow. 

We now proceed to consider the effect of a phase change on Rayleigh- 
Benard convection. Two groups of numerical experiments were considered. 
The first group was designed to determine the critical Rayleigh number of 
Rayleigh-Benard convection through a phase boundary. The numerically de- 
termined critical Rayleigh number can then be compared with the appropriate 
point on the family of neutral curves in Figure 14. The second group of experi- 
ments explore the finite amplitude regime. 

The critical Rayleigh number for the two-phase system was estimated by 
varying the Rayleigh number until two values sufficiently close together were 
found such that perturbations grew for one value and decayed for the other. 
The growth or decay of the perturbations was determined by observing the 
temperature and vorticity field over long periods of time. Such a method of 
estimating the critical Rayleigh number is very costly in terms of computer 
time owing to the small growth or decay rates near the neutral curve. For 
this reason, only three cases were considered' 

Ro=0 S=2 

Ro = 240 S = 0 

Ro = 100 S = 2 

In all three cases the phase change occurs at a mean depth of D/2 (specified 

3OO 
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RA 
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/ 

i III 
i 

.2 .4 .6 
NONDIMENSIONAL AMPLITUDE 

Fig. 17. Amplitude of horizontal convection through 
a phase boundary as a function of the Rayleigh num- 
ber. Asterisk indicates RQ -- 0 and Rp -- 0. Dotted 

circle indicates_RQ/R• -- 0.24 and R•/R• -- 6/i7. 
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by T•) and the boundaries are free so that the numerical model reproduces the 
same problem considered in the linear theory. 

The numerical critical Rayleigh numbers can be compared with their 
analytically predicted value by plotting them on a graph of the relevant 
analytical neutral curves as shown in Figure 18. The excellent agreement be- 
tween the numerical results and the linear theory can be taken as a measure 
of the accuracy of the numerical techniques used. As was previously discussed, 
the choice of a finite phase transition •one of thickness 0.1D, instead of a sharp 
discontinuity as assumed in the linear theory, has no observable effect on the 
stability of the fluid. 

We now consider the finite-amplitude regime. Figure 19 shows a typical 
case of steady Rayleigh-Benard convection through a phase boundary. The 
boundary conditions are 

t•= 0 w=wzz=0 z= 1 

0= 1 w=wz,=0 z=0 

Periodic boundary conditions are imposed at x - 0 and x - 25, which are 
satisfied if the temperature field is symmetric and the stream function is anti- 
symmetric about x - 12.5. The nondimensional parameters are R• - 500, Rv 
= 800, and Ro - 120, and this choice implies a Clapeyron slope of 6øC km -•. 
These parameters will result from a vertical temperature change of 500øC, 
Ap - 0.08, and qr.- 40 cal g-• when gaDa/Kv -- 1. These values for Ap and 
are the values suggested by Schubert and Turcotte [1971] as typical of the 
olivine-spinel transition in the upper mantle. The effect of the phase change 
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Fig. 18. N.umerical critical Rayleigh numbers for three test cases and analytical neutral 
curves for convection through a phase boundary. 
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is clearly destabilizing, since R• = 500 is subcritical in the absence of a phase 
change. The phase boundary (r - 0.5 surface) has periodic changes in elevation 
that result from the horizontal variations of the temperature field. The phase 
boundary is at shallower depth in regions of down-welling, since the down- 
welling promotes locally cooler temperatures. 

It is interesting to compare the amplitude of Rayleigh-Benard convection 
through a phase boundary to the amplitude of single-phase convection. Figure 
20 shows the steady-state amplitude of both these cases as a function of the 
Rayleigh number. The paramenter range was chosen to include a phase change 
having the properties of the olivine-spinel transition in the upper mantle. The 
effect of the phase change is to increase the amplitude of Rayleigh-Benard 
convection for all values of R•. 

The amplitude of steady Rayleigh-Benard convection in a single-phase 
system can be written in terms of the Rayleigh number as 

A = Cl[(Sa -- Sa)/Sa] 1/2 

RA 

lOOO 

500 

I I 
0 10 20 30 

MAXIMUM NONDIMENSIONAL VERTICAL VELOCITY 

RA 

1000 

50O 

'-' o 

i i i i 

0 5 10 15 20 

CHANGE IN ELEVATION OF PHASE BOUNDARY 

FROM MEAN VALUE 

Fig. 20. Effect of a phase change on amplitude of Rayleigh- 
Benard convection and effect of convection on the elevation 

of the phase boundary. Dotted circle indicates RQ/R,• -- 0.24 
and R•,/RQ -- 6.67. Cross mark indicates R• -- 0 and R• -- 0. 
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where 

Rc the critical Rayleigh number; Rc- 657.5. 
C• constant; C• - 10.88. 

The amplitude data for convection through a phase boundary can be fitted 
by a similar relation if C• - 23 and Rc- 450. This suggests that for Rayleigh 
numbers greater than 1000 the effect of the phase change will be to increase 
the amplitude by a factor of approximately 2. 

Figure 20 also shows the effect of finite-amplitude convection on the eleva- 
tion of the phase boundary for the same three cases shown in the upper graph. 
Therefore vertical velocities can be related to changes in phase boundary eleva- 
tion. If the velocity is dimensionalized by using D -- 1000 km and K - 10 -2 cm 2 
sec -•, then a vertical velocity of 0.1 cm yr -• results in approximately a 15-km 
change in the phase boundary elevation from its mean value. 

Figure 21 shows the effect of changing the mean depth at which the phase 
change occurs. The mean depth of the phase change is 0.75D. The variations in 
the phase boundary depth are no longer sinusoidal and show definite 'peaking' 
on the side away from the nearest boundary. Similar peaking away from the 
nearest boundary is found if the phase change is at shallow depth. No good 
explanation for this effect has been found. 

Up to this point we have restricted our attention to phase changes with posi- 
tive Clapeyron slopes. Ahrens and Syono [1967] suggest that the transformation 
of Mg2Si04 in the spinel structure to periclase and SiO• in the stishovite structure, 
which occurs at an average depth of 800 km, has a negative Clapeyron slope. A 
numerical calculation was performed by using their parameters for this reaction. 
The hope was that a phase change with negative slope would prove a barrier to 
vertical motions and thus provide a determinable lower boundary •o the astheno- 
sphere. The calculations showed that a phase change having the properties of the 
spinel-stishovite transition is mildly stabilizing (compared with no phase change), 
but it is not a barrier •o vertical motions. Figure 22 shows the results for Rayleigh 
number 2000. The principal effect of the negative slope of the Clapeyron curve is 
that now the phase boundary is at shallower depth in regions of up-welling. 

It is at first surprising to find that changing the slope of the Clapeyron curve 
from positive to negative has so little effect on flows through the phase boundary. 
This lack of dramatic effect can bes• be understood by considering •he equation 
governing the system. The vorticity equation is 

•7• = R• OT/Ox -- R• or/ox 

If the Clapeyron curve has positive slope, then OT/Ox and Or/Ox have everywhere 
opposite sign, as can be seen in Figure 22. Therefore both these sources generate 
vorticity of the same sign. This implies that the term R• Or/Ox is destabilizing. 
On the other hand, cellular motions will cause heat to be released in regions of 
down-welling and absorbed in regions of up-welling. This has the effect of decreas- 
ing horizontal temperature gradients and thus degrades a source of vorticity. 
If the Clapeyron curve has negative slope, a similar line of reasoning leads one to 
conclude that the term R• Or/Ox is now a sink for vorticity generated by OT/Ox, 
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whereas the energy of phase change enhances the source OT/Ox. The difference 
between the positive and negative Clapeyron slope cases is that the roles of the 
two opposing dynamical properties of the phase change are reversed. 

The question of whether phase changes must be included in the formulation 
of subsequent model problems can now be considered. One of the principal 
dynamic effects of a phase change is to shift the critical Rayleigh number. This 
does not seem to be of great importance (to subsequent models) if we note that 
the amplitude of Rayleigh-Benard convection depends on the difference between 
the actual and the critical Rayleigh number and that the actual Rayleigh num- 
ber in the upper mantle is not known within an order of magnitude. It is unneces- 
sary to specify the critical Rayleigh number exactly when such uncertainty exists 
regarding the actual Rayleigh number. In the case of horizontal convection, phase 
changes (in the parameter range considered) increased the amplitude of the 
motion by a factor of 3. A potential error of a factor of 3 cannot be very impor- 
tant if we do not know the proper value (K/D) to use in redimensionalizing the 
model velocities. The final point is that, although phase changes may effect the 
amplitude, t. hey have very little effect on the structure of the flow. The overall 
conclusion is that until we have better estimates of the parameters pertinent to 
asthenosphere motions, the dynamic effect of phase changes can be ignored in the 
subsequent model problems. 

Once models of particular geophysical interest are found, it may be useful to 
include phase changes as a second step. We would include the phase changes, not 
so much because of their effect on the motions, but rather to estimate the effect 
of the motions on the phase boundary elevation. Changes in phase boundary ele- 
vation may be detectable by geophysical techniques [Julian, 1970] and thus could 
provide a way of testing the validity of any given model. 

6. LITHOSPHERE-ASTHENOSPHERE MODELS 

All the previous model problems treat the asthenosphere as separable from 
the lithosphere. These pro.blems were sufficient to answer specific questions about 
possible flows in the asthenosphere but cannot be thought of as dynamic models 
of sea floor spreading. The complete dynamics of present-day sea floor spreading 
can only be studied by using coupled lithosphere-asthenosphere models for the 
following reasons' (1) the motion of a lithospheric plate is a very strong source 
of vorticity; (2) a moving lithosphere implies a net mass flux in the astheno- 
sphere from trench to ridge; and (3) the subduction of lithospheric material into 
the asthenosphere results in dynamically significant temperature and density 
variations. 

In this section we shall investigate two lithosphere-asthenosphere models 
that reflect the geometry shown in Figure 2. The first model considers the left 
half of the figure and accordingly is called the Pacific model. The second model 
(Atlantic model) reflects the geometry of the right half of Figure 2. 

a. Pacific model. The geometry and nondimensional boundary conditions 
of the Pacific model are shown in Figure 23. 

The portion of the figure marked by diagonal lines represents the lithosphere 
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Fig. 23. Pacific model. 

• Z=l.1 

Z=l.0 

•=0 

Z=O 

with a ridge at x - L and a subduction zone at x - 0. The geometry of the model 
is considered to be unchanging even when the lithosphere moves (VL :/: 0), 
because material is continuously added to the plate at the ridge (x - L) and is 
lost at depth under the trench (x - 0). We are ignoring changes in geometry that 
result from the migration of the site of subduction, the philosophy being that if 
we can find a viable model that does not depend in any important way on the 
exact geometry, the model will be valid even if the geometry is changing slowly. 

The temperature boundary conditions are applied to a larger domain (-l • 
x • L, 0 • z • 1.1) than are the kinematic and dynamic boundary conditions 
(0 • x • L, 0 • z • 1.0). The temperature boundary condition at x - -l and 
x - L results from assuming the model to have geometric symmetry about x - -l 
and x - L. The lithosphere contains heat sources such that 0 - 1.2 at z - 1. If 
we dimensionalize the temperature by using AT - 1000øC, this would result in a 
geophysically reasonable temperature of 1200øC at the base of the lithosphere. 

The dynamic and kinematic boundary conditions, shown in Figure 23 in 
terms of the vorticiW v and stream function q•, have t,he following physical inter- 
pretation. At z - 1.0 the fluid must move with the velocity of the overlying plate, 
and therefore q• - --VL. The condition q• - q•T, a constant, comes from requiring 
that the horizontal mass flux in the asthenosphere balance the mass flux implied 
by Vt. If we choose q• - 0 at z - 0, then mass conservation requires 

x.x •ox fo •, dz = •, dz + •, dz = 0 
which, when evaluated, results in q•T - 0.iVy. Similarly, the boundary conditions 
at x - 0, 0.3 • z • 1.0 require that the fluid move with velocity V•. The 
boundary z - 0 is not moving, and thus fluid velocities must vanish there, which 
can be specified by requiring that q• and q• be 0. The condition • - 0 and v - 0 
on x - L result from the geometric symmetry of the problem about x - L. The 
boundary conditions on the asthenosphere are completed by specifying an influx 
of mass at x - 0, 0 • z • 0.3 and an outflow at the ridge (x - L). The velocity 
profile at x - 0 was chosen to have the vertical structure of a sech • centered at 
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z = 0.15. The outflow profile is taken to be constant. A final condition is imposed 
by requiring that • - 0 for x • 0. This condition implies only that we are 
ignoring the advection of heat in the region to the left of the downgoing slab. 
If we can find a way to specify VL, we need only calculate .q• and • over a simple 
rectangular domain 0 • x • L and 0 • z • 1.0. 

The velocity of the lithosphere, if steady, results from a balance between the 
viscous stresses on the plate and any external forces acting on it. Several authors 
[McKenzie, 1969; Turcotte and Schubert, 1971] have indicated that the sub- 
ducted lithosphere is denser than the material it penetrates and is therefore sub- 
jected to a negative buoyancy force. The balance of forces on the lithospheric 
plate can be written: 

• dx + a z dz = Fg (53) 

where ax and az are the viscous stresses on the plate and Fg is the total negative 
buoyancy force. In principle, the negative buoyancy force can be determined by 
using the temperature field solution calculated. However, it is preferable to use 
the values reported by Turcotte and Schubert, since their analysis of the thermal 
regime of the downgoing slab is much more sophisticated than the present more 
general formulation permits. 

One approach to the model problem is to prescribe VL, calculate the stresses, 
and then use (53) to find the negative buoyancy force required to maintain the 
prescribed V•. The required buoyancy can be compared to the reported values to 
find if a viable model results. Using this approach, numerical solutions were 
obtained for various values of V•. 

Figure 24 shows the nondimensional temperature and stream function field 
for a case in which Ra - 10 • and V• - 300. A nondimensional velocity of 300 cor- 
responds to a dimensional-plate velocity of 1 cm yr -• if K - 10 -• cm 2 sec -• and 
D - 1000 km. When these values of K and D are used, the figure represents a 
dimensional time of 7 x 10 ? years after the beginning of subduction. 

The temperature field was allowed to reach a steady state before the velocity 
boundary conditions were imposed. Once motions begin, the isotherms are warped 
by the downgoing slab. The fluid to the left of the slab is quiescent, whereas the 
fluid on the right must satisfy a no-slip boundary condition. By comparing the 
temperatures on either side of the slab, one concludes that the effect of advection 
in the surrounding asthenosphere is to reduce horizontal temperature gradients 
near the slab. 

The stream function field is more complicated than expected. The large-scale 
flow is a vortex, driven primarily by the moving boundaries, whose center is well 
above the midpoint of the fluid layer. A smaller region of closed circulation can 
be seen near the downgoing slab. These characteristics of the flow persisted even 
in cases where the Rayleigh number was as small as 1, which indicates that they 
must be properties of the solution of the biharmonic equation v4.• - 0. 

Pan and Acrivos [1966] have solved the biharmonic for low Reynolds num- 
ber, steady flow in a rectangular cavity where the motion is driven by the uni- 
form translation of a boundary. They find that the structure of the flow is very 
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dependent on the aspect ratio of the cavity. The shallowest layer they consider 
has an aspect ratio D/L of 0.25 (Figure 24 has an aspect ratio of approximately 
0.15). For the shallowest case, they find that the center of the large vortex is 
centered at D/3. Figure 25a, taken from their paper, shows this result. If the flow 
in the cavity is driven by its shorter boundary, a primary cell of aspect ratio 1 
develops near the moving boundary. Weaker cells fill the rest of the domain, but 
their amplitude is smaller by a factor of 104 (Figure 25e). Since the biharmonic 
operator is linear, we can superimpose flows 25a, e. Such a superposition confirms 
the general characteristics of the flow in Figure 24. 

Having gained a measure of confidence in our solution, we can consider the 
question of the negative buoyancy required to move a lithospheric plate at 
geophysically reasonable rates. If the plate is moving with constant velocity, 
the total viscous drag exerted by the fluid below is a measure of the negative 
buoyancy of the downgoing slab (equation 53). Figure 26 summarizes the results 
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Fig. 26. Lithosphere velocity as a function of total nega- 
tive buoyancy of subducted slab from Pacific model with 

R•- 104. 

of three numerical calculations and shows the buoyancy force required to main- 
tain a given plate velocity. The total force and velocity have been dimension- 
alized using K - 10 -2 cm 2 sec -•, D - 1000 km, and • - 10 •2 poises. The published 
estimates of total negative buoyancy [McKenzie, 1969; Turcotte and Schubert, 
1971] are in the range 10•6-10 •7 dynes. These estimates result in model spreading 
velocities in the range 1-10 cm yr -•, which is the range of observed spreading 
rates. The agreement in plate velocity between this model and observations does 
depend on the value of the physical quantities used in dimensionalizing the veloc- 
ity, and, as previously pointed out, these quantities are not known exactly. Keep- 
ing this note of caution in mind, the principal conclusions derived from this model 
problem are that (1) the moving plates are themselves an important source of 
vor•icity and drive a large primary vortex with a smaller region of closed circula- 
tion near the downgoing slab, and (2) the negative buoyancy is always an impor- 
tant dynamical quantity and is sufficient to explain, observed spreading rates if 
present estimates of the physical quantities involved are correct. 

The implicit assumption is made that the negative buoyancy force can be 
transmitted to the overlying lithosphere. What happens if the downgoing slab 
is not mechanically coupled to the overlying lithospheric plate? Since this 
mechanical decoupling is true for plates bordering the Atlantic ridge (Figure 2), 
we proceed to investigate what I have called the Atlantic model. 

b. Atlantic model. The formulation of the Atlantic model differs from 

formulation of the Pacific model in two ways. First, since the overlying litho- 
sphere is no longer directly coupled to the downgoing slab, the balance of forces 
on the lithosphere becomes simply 

ffe• dx = 0 (54) 
Fig. 25. (Opposite) Solution of the biharmonic equation in a rectangle with uniform 
translation of one boundary [after Pan and Acrivos, 1967]. A is aspect ratio defined as 

depth over width. 
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when V• is constant. The second difference is tha• the heat sources within the 
lithosphere have been redistributed to simulate the thermal effect of the continent 
embedded in the Atlantic plate. Aside from these two changes, the model is the 
same as the one shown in Figure 23. 

The model problem is to be solved numerically. We can no longer specify V• 
a priori, as we could in the Pacific model, since •here are no external forces on the 
pla•e besides •he viscous stresses. The velocity of the plate is found using a relax- 
ation technique that varies V• until the stress constraint (54) is satisfied •o a 
prescribed accuracy. Such a procedure is convergent but costly, since for every 
new value of V• in the iteration a new interior flow must be calculated (V• is a 
boundary condition on the interior flow). This method for finding V• is formally 
valid only if V•. is constant with time. However, since the overlying plate will re- 
spond almost instantaneously to changes in the interior flow (the time scale 
being inversely proportional to the viscosity), the method will be used even when 
V• is a slowly varying function of time. 

Figure 23 assumes that the velocity of the downgoing slab is equal to the 
velocity of the lithospheric plate. In •he physical problem •ha• motivates this 
figure, the rate of subduction depends on •he sum of the velocity of the two plates 
converging at the trench. Therefore we can also consider cases where the ra•e 
of subduction is grea•er than the velocity of the Atlantic plate alone. 

The first question we can consider using the Atlantic model is the efficiency 
of a single convective cell in moving an overlying plate. A series of numerical 
experiments with a single cell driven by horizontal temperature variations on 
the boundaries were calculated. The results indicate tha• a single cell gen- 
erates a plate velocity approximately equal to the maximum cell velocity 
multiplied by the ratio of the width of the cell •o the length of the overlying 
plate. We thus have a 'rule of thumb' that sta•es: 

where 

H 

L 

= (55) 

maximum cell velocity. 
width of cell. 

length of the overlying plate. 

Furthermore, since the integral constraint used to find VL is independent of 
viscosity, the rule of thumb is also independent of viscosity. 

Figure 27 is an example of the Atlantic model in which the Rayleigh number 
is 104 and the rate of subduction equals VL. The lithosphere contains a continent 
extending from the subduction zone at x = 0.6 to x = 5. In the early stages of 
spin-up (Figure 27a), the edge cell at x = 5, driven by the thermal presence 
of the continent, is the dominant feature of the flow. The nondimensional velocity 
of the overlying plate (-2.0) is approximately 1/3U,n•, as the rule of thumb 
would suggest. At a later stage (Figure 27b), R.ayleigh-Benard cells have 
reached significan• amplitude, and •heir effec• is to slow the plate and eventually 
bring i• to rest. The variation in cell size is due •o the many mechanisms presen• 
in •he model tha• can add to or de•rac• from Rayleigh-Benard convection. 



SEA FLOOR SPREADING 277 

D9'9 

0œ'9 

DO'9 

Ol'g 

Og't, 

O;'t, 

06"2 

09 

O;'G 

00'œ 

OZ'• 

01'2 

09' 1 

0½3'1 

0•' I, 

0•' 

09' 

0œ' 

O0'C 

o oO o o • o o .o .,ø ø o õ 

0œ'9 
i . 

•l IW' I 
_o oO,O ,,9,o,o.• •-o8 

ß ... o 

0•,'• 

01'• 

OB'l 

Og'l 

0•'• 

06' 

09' 

os' 

00'0 

o õ .o o o o o .o •o o o oO - , , •. • •o n. -. 
-: ,- O 

o 8 .o .o •o .o •o ø o o o 8 - . . . 'K. •. •. - . 
' , o 

09'9 

0œ'9 

00'9 

OZ,'g 

Olv'g 

01 'g 

08'•, 

Og't,' 

oz'•, 0•'œ 

o9'• 

00'• 

09'9 
0;'9 
00'9 

09'g 
08'9 

o•'• 
06'; o..; 

oo'• 

o•'z 08'1 

O;'i 
06' 

0•' 

oo.o 



278 FRANK M. RICHTER 

Even with the Rayleigh number equal t•o lif t, the maximum dimensional plate 
velocity reached was only 10 -2 cm yr -• (where K = 10 -2 cm sec -• and D = 
1000 km). The conclusion drawn from this case and similar cases with different 
aspect ratios is that only small velocities are achieved if the plates are driven 
solely by the viscous traction of thermally driven flows. The fact that the Ray- 
leigh-Benard cells can overcome the edge cell has been seen before in connection 
with the breakup problem. 

Fortunately, we still have the freedom of considering models in which the 
rate of subduction is greater than the velocity of the overlying plate. Figure 28 
represents the same calculation as Figure 27, only that now the rate of sub- 
duction is 3VL. The resulting plate velocity is greater and the Rayleigh-Benard 
cells no longer bring the plate to rest. The effect of the rate of subduction can 
be seen in Figure 29, in which the platte velocity as a function of tame is shown 
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for various rates of subduerion W. The velocity of the lithosphere grows initially 
as the edge cell spins up. As Rayleigh-Benard cells reach significan t amplitude, 
the plate velocity begins to decrease. If the rate of subdu•tion is sufficiently 
large, it begins •o bias the Rayleigh-Benard cells in such a way that the plate 
velocity begins to increas• again. 

Figure 30 is a better illustration of the role of the downgoing slab as a 
modifier of Rayleigh-Benard cells. The aspect ratio in this case is about 0.3; 
this enhances the effect of the slab, which is being subducted at a rate of 2Vr•. 
The rate of subducQon is sufficiently large in this case to virtually destroy the 
Rayleigh-Benard cells. The dimensional velocity in this example is 0.1 ½m yr -•. 

These Atlantic models suggest that convection, either in the Rayleigh- 
Benard sense or driven by horizontal temperature gradients of the order of 
100øC/1000 km, is a relatively inefficient mechanism for driving an overlying 
plate. Furthermore, if the models include significantly large (but geophysically 
reasonable) lithospheric velocities, it appears that cellular convection is no 
longer a physically realizable flow. This suggests that the role of the downgoing 
slab, even when not directly coupled to the overlying lithosphere, is essential 
in obtaining reasonable plate velocities. 

The effect of a de½oupled downgoing slab can be estimated by using a dif- 
ferent approach. Let us assume for the moment a subducQon rate of Vs. The 
calculation of Pan and Arivos (Figure 24) tells us that a cell of aspect ratio 
I results. Then, by using the rule of thumb (55), we find that the lithospheric 
plate, even though de½oupled, will move with a velocity VL -- Vs(D/L), 
where D is the depth extent of the asthenosphere, and L is the distance from 
trench to ridge. This result implies that, even when not mechanically coupled to 
a lithospheric plate, the downgoing slab can generate velocities of the order 
of 1 cm yr -•. 
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Fig. 30. Atlantic model in late stages of spin-up with 
R• -- 10 • and subduction rate of 2V• (with V• • 10 -• 
cm yr-•). Top' temperature, contours from 0 to 1.6. Bot- 

tom' stream function, contours from --0.6 to 9.6. 

7. CONCLUSIONS 

The three principal requirements of a dynamical model of sea floor spread- 
ing are given below. 

1. The model must generate net forces on the lithosphere capable of first 
breaking it and must then transport the resulting fragments away from the 
original fracture. 

2. Once the lithosphere begins to move away from the fracture, the 
asthenosphere must balance the mass flux implied by this motion. 

3. These first two requirements must be satisfied in a length of time, the 
most upper bound of which is the age of the earth. 

In terms of these requirements, the most important conclusions derived 
from the various model problems are restated below. 
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Rayleigh-Benard convection: 
1. Generates periodic stresses and thus no net force on an overlying plate. 
2. Does not satisfy the required mass transport in the asthenosphere 

from trench to ridge. 

Combined horizontal and Rayleigh-Benard convection: 
1. Can provide a net force on an overlying plate. 
2. Suggests a break-up mechanism for large continental masses, in relation 

to which smaller continents are stable. 

3. Does not satisfy required mass transport in the asthenosphere. 

Phase changes: 
1. Can increase or decrease critical Rayleigh number of Rayleigh-Benard 

convection. 

2. Can increase or decrease finite amplitudes by a numerical factor of the 
order of one. The olivine-spinel transition increases the amplitude of convec- 
tion by a factor of about two. 

3. Do not affect the structure of the flow. 

4. Vary in depth owing to advected heat, and these variations may provide 
a viable test of kinematic models of the asthenosphere. 

Pacific model: 

1. Produces lithospheric velocities of the same order as geophysically, 
interpreted plate velocities. 

2. Satisfies mass transport requirement in the asthenosphere. 
3. Has growth time very short compared to the age of the earth. 

Atlantic model: 

1. P'roduces only small plate velocities if the lithosphere is driven solely 
by themally generated flows. 

2. Is such that sufficiently large and consistent plate velocities result if 
the rate of subduerion of a mechanically alecoupled (from Atlantic plate) down- 
going slab_ is greater than the Atlantic plate velocity itself. 

3. Satisfies mass transport requirement in the asthenosphere. 
4. Has growth time short compared with age of the earth. 
The most important dynamical conclusion derived from the sequence of 

model problems is the preeminence of the subdueted lithosphere among the 
driving mechanisms considered. The downgoing slab, by virtue of its large 
negative buoyancy, is capable of directly driving the Pacific plate and indirectly 
driving the Atlantic plate at geophysically reasonable velocities. Even if the 
negative buoyancy has been exaggerated, a moving lithosphere and downgoing 
slab impose velocity boundary conditions that cannot be ignored in any discus- 
sion of flows in the asthenosphere. 

The complete set of model problems are suggestive of the following sequence 
of events. A major continental mass is fractured by the viscous traction, on the 
base of the lithosphere, of thermally driven flows. Since this mechanism is found 
to be incapable of generating large plate velocities, the fracture need not lead 
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to significant spreading. The widespread existence of continental scale rifting 
throughout the geologic record may be evidence of frustrated spreading attempts. 
If, on •he other hand, •he •hermally driven spreading exceeds a critical length, 
subduc•ion of the lithosphere begins, and a new element enters •he dynamics of 
•he system. This second s•age, driven primarily by •he negative buoyancy of the 
downgoing slab, is both fas• (1-10 cm yr -•) and irreversible. This s•age also 
implies •ha• pla•es supplying the subdueted material move fastest. This sequence 
of events is really just •he gravitational instability of lithospheric pla•es to 
finite amplitude perturbations provided by •hermally driven flows. 

APPENDIX' NUMERICAL FORMULATION OF MODEL PROBLEMS 

The most general set oœ nondimensional equations that we encounter are 
those governing a two-phase system. They are 

where 

0 

o0/ot = J(g,, 0 - Ro/R•r) + Ro/R. or/or + •o 
•,• = R. OT/Ox - R,, or/ox 

Ro 

(56) 

(57) 

(58) 

temperature. 
vorticity. 
stream function. 

fractional concentration of denser phase. 
Rayleigh number based on typical temperature scale; R• = gaATD3/K•. 
Rayleigh number based on fractional change in density between the 
two phases (Ap); R• = gap D3/K•. 
Rayleigh number based on energy released per unit mass of material 
changing phase (qL); RQ = ga(qL/C•)D3/•y. 

2At 
J•(• o • - Ro/R,r) • + Ro/R, - ' At 

n n n+l in--1) q- (1/Ax)2(0,+•,• q- 0•_•.• -- 0,.• -- 0•. 

q- (1/Az)2(O• •+•'• q- O, i- -- 0,.• -- 0,.• ) (59) , , 1 n n+l n--1 

where n measures the time step and the subscripts { and j are the ß and z grid 
points, respectively. We write Ja (a, fi), the Jacobian operator, using the Arakawa 
[1966] scheme, which conserves •, •, /S, and •a. 

To find 0•,• •+•, w•e need r..• We assume that the phase boundary corresponds 

n+ 1 n-- 1 

O•.i -- O•.i 

The effect of the phase change can be s.uppressed by choosing R• - 0 and 
Ro -0. 

The most general boundary conditions, in terms of a normal coordinate • and 
a tangential coordinate •, are Tr=o = T(•); fr=o = f(•), which specifies the velocity 
normal to the boundary; and 0f/0•r=o = $(•), which specifies the velocity along 
the boundary. 

The temperature equation can be integrated by using the explicit scheme 
of Du[ort and Frankel [1953]. The finite difference analogue to (56) becomes 
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to the surface r = 0.5 (50% concentration of each phase). The depth to the 
phase boundary (Zoo) at each x distance is defined by the intersection of the 
Clapeyron curve, written in temperature depth coordinates, and the local tem- 
perature gradient. The intersection of these two curves can be found by using 
any standard technique. Once we find Zo?, we specify F•.j n as 

- 0.511 + tanh (Zo• n - j(Az))L] (60) 

The vertical structure of F was specified to be a hyperbolic tangent centered at 
Zo• and varying on a vertical length scale L. The effect of the arbitrariness in 
our choice of vertical s•ructure is discussed in the section on the role of phase 
changes. It was found that as long as L is small compared with the depth of the 
fluid, the exact vertical structure of F is of no consequence. Having defined 
I•i,j n, we can find Oi,j •+• from (59). 

The numerical, advective stability condition requires that At, the time step, 
satisfy U•.At/$ ( 1, where U• is the maximum velocity and 8 the grid spacing. 
Even •hough the Dufort-Frankel scheme does not explicitly require it, I found 
that it is best to also satisfy a diffusive stability condition, At ( •. 

Once we have the updated (n .+ 1) temperature field, r can be updated, 
and thus the source terms in the vorticity equations are determined. Both the 
vorticity equation (57) and the stream function equation (58) are Poisson 
equations, which are solved by using a noniterative scheme developed by 
Buneman [ 1969]. 

If we consider stress-free boundaries, the vorficity is 0 everywhere on the 
boundaries, and (57) and (58) can be solved directly. If we consider the more 
general case of moving, 'rigid' boundaries, the kinematic and dynamic boundary 
conditions are specified in terms of the stream function alone. There is no direct 
way in which •he dynamic boundary condition (0•/0•)r_-o = •(•) can be transformed 
into a condition on the vorficity. This becomes clear if we consider that the vorficity 
is proportional to the stress on the boundary, and the stress is unknown until 
we actually solve the problem. 

An iterative method, suggested by Israeli [1970], is used to obtain the 
vorticity on the boundaries consistent with the dynamic boundary condition on 
the stream function. The general iteration formula is 

- -- ,:I:,, (61) •,o - •,o + •L\O•/,,o 
where the boundary is at j = 0, K is an iteration counter, and • is a convergence 
parameter chosen by trial and error. 

The normal derivative of the stream function on the boundary can be 
written in finite difference form as 

(3/AZ) o•K/o•i,O -- (81•i'1K -- •i'2K-- 71•i'0K) 
Substitution of (62) into (61) yields 

•+• _ • -- •k,,• -- 7•k, o •) _ 3,I,i/AZ (63) •,.o - w•,.o d- (1 -- w) (8g,,.• . (az) 
when •o -- (3/AZ)(1 -- w). 
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The iteration formula (63) requires an initial 'guess' of ,•,o K and the value 
of the vorticity from the previous time step is the best guess available. The 
iteration in K requires that we solve both the vorticity and stream function 
equations for each K. Once w,• K+• .-- m,o K --+ E for E << 1, then the dynamic 
boundary condition is satisfied to an accuracy of --+E/(o (see equation 61). 

The overall accuracy of the numerical scheme for solving equations (56) 
through (58) is best estimated by comparing the numerical results with analytical 
results. Such comparisons are made throughout this study. 
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