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Abstract

Non-fuel marine minerals are reviewed from the perspective of resources and their value as active analogs that can advance
understanding of types of ancient ore deposits that formed in marine settings. The theory of plate tectonics is the largest influence in
expanding our vision ofmarineminerals and in developing our understanding of geologic controls ofmineralization in space and time. Prior
to the advent of plate tectonics, we viewed the ocean basins as passive sinks that served as containers for particulate and dissolved material
eroded from land. This view adequately explained marine placer deposits (heavy minerals and gems), aggregates (sand and gravel), and
precipitates (phosphorites and manganese nodules). Although numerous sites of placer mineral deposits are known on continental shelves
worldwide, current activity pertains to diamond mining off southwestern Africa, tin mining off southeastern Asia, and intermittent gold
mining off northwestern North America, which are all surpassed economically by worldwide recovery of marine sand and gravel, in turn
dwarfed by offshore oil and gas. With the advent of plate tectonics, plate boundaries in ocean basins are recognized as active sources of
mineralization in the form of hydrothermal massive sulfide deposits and proximal lower-temperature deposits hosted in oceanic crust (mafic
at ocean ridges and felsic at volcanic island arcs), and of magmatic Ni–Cu sulfide, chromite and PGE deposits inferred to be present in the
oceanic upper mantle–lower crust based on their occurrence in ophiolites. Some 300 sites of hydrothermal active and relict mineralization,
most of themminor, are known at this early stage of seafloor exploration on ocean ridges, in fore-arc volcanoes, at back-arc spreading axes,
and in arc rifts; deposits formed at spreading axes and transported off-axis by spreading are present in oceanic lithosphere but are virtually
unknown. The TAG (Trans-Atlantic Geotraverse) hydrothermal field in the axial valley of the Mid-Atlantic Ridge (latitude 26° N) is
considered to exemplify a major Volcanogenic Massive Sulfide (VMS) deposit forming at a spreading axis. The most prospective of these
occurrences lie within the 200 nautical mile (370 km)-wide Exclusive Economic Zone (EEZ) of the nations of the volcanic island arcs of the
western Pacific where metal content of massive sulfides (Ag, Au, Ba, Cu, Pb, Sb, Zn) exceeds that at ocean ridges. Plate tectonics early
provided a framework for mineralization on the scale of global plate boundaries and is providing guidance to gradually converge on sites of
mineralization through regional scales of plate reorganization, with the potential to elucidate the occurrence of individual deposits (e.g.,
Eocene Carlin-type gold deposits). Investigation of the spectrum of marine minerals as active analogs of types of ancient mineral deposits is
contributing to this convergence. Consideration of questions posed by Brian Skinner (1997) of what we do and do not know about ancient
hydrothermal mineral deposits demonstrates the ongoing advances in understanding driven by investigation of marine minerals.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Our vision of marine minerals is expanding rapidly as
our understanding of the Earth advances. The theory of
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plate tectonics is recognized as the largest influence in
expanding our vision. As noted by Brian Skinner
(2004), “Plate tectonics has yet to influence economic
geology the way it has influenced, even transformed,
other areas of geology”. Perhaps nowhere has plate
tectonics more potential to transform economic geology
than through investigation of marine minerals as active
analogs of various types of ancient deposits formed by
inter- and intra-plate processes on and beneath the
seafloor and preserved on land (Fig. 1; Table 1).
Processes at plate boundaries have been effectively
applied as a global framework to broadly classify certain
types of ancient mineral deposits presently known from
their occurrences on land (Table 2; Mitchell and Garson,
1981; Sawkins, 1984, 1990) and to show the evolution
of metallogenic provinces through time (Kerrich, 1992;
Kerrich et al., 2005). Whatever the outlook for their
resource potential, investigation of marine mineral
deposits provides an unprecedented opportunity to
directly investigate active ore-forming processes that
elucidate the genesis of those types of ancient deposits
that were formed in marine settings related to plate
boundaries. In this paper we briefly review the spectrum
of non-fuel marine minerals from the perspective as
products of plate interactions, of their roles as resources,
and as active analogs of ancient ore deposits that formed
in marine settings. We narrow the gap in application of
plate tectonics to mineralization from a global to a
regional scale by consideration of relations between
geologic controls of mineralization and a global plate
reorganization documented in the Eocene epoch.

2. Marine minerals and plate tectonics

Earth models prevalent prior to the advent of plate
tectonics in the 1960's minimized horizontal crustal
movements and emphasized vertical movements. Con-
tinents were considered fixed in position and ocean
basins were permanent features. Geotectonic cycles of
mountain building were considered to follow a pre-
determined sequence of events involving a finite
number of variations on the theme of sediment
accumulation in subsiding belts (geosynclines) and
subsequent crustal accretion involving vertical uplift
with relatively small horizontal components of motion
(Oreskes and Le Grande, 2001). Ocean basins were
regarded as big bathtubs that passively contain the
oceans and accumulate a large thickness of sediment
under this relatively static and deterministic Earth
model.

The pre-plate tectonic view adequately explained the
types of marine minerals known at that time. These
include placer deposits of dense metallic minerals and
gemstones, and aggregates (sand and gravel) derived by
mechanical erosion of terrestrial rocks and transported,
sorted, and concentrated in beach and offshore sediments
by flowing water (Fig. 1; Table 1). The marine minerals
also include hydrogenetic (authigenetic) deposits of
phosphorite on continental shelves and manganese
nodules on abyssal plains (Cronan, 1980), as well as
salts in seawater derived primarily from chemical ero-
sion of terrestrial rocks.

The theory of plate tectonics changed our view of the
ocean basins from passive sinks for material eroded
from land to active sources of mineralization. Focus
switched from terrestrial erosional processes to tectonic
and magmatic processes at plate boundaries (divergent
and convergent), largely submerged beneath the oceans.
Seafloor mineralization is a byproduct of a global
system of exchange of heat and chemicals among the
mantle, crust and oceans at these plate boundaries. The
ocean basins are leaky as containers, because the
volcanic rocks of ocean crust are porous and permeable
(permeabilities 10−9 to 10−10 m2; Fisher, 2003; Becker
and Davis, 2004; Becker et al., 2004) and subduction
zones transport water into the mantle (Meade and
Jeanloz, 1991). Thermoviscoelastic models suggest that
thermal stress is sufficiently high to fracture 100 million
year old oceanic lithosphere to a depth beneath the
seafloor of at least 30 km providing pathways for
hydration and serpentiniztion of the mantle (Korenaga,
2007). An estimated ∼1012 kg of pore water and
∼1012 kg of chemically bound water (altered basalt,
gabbro, and serpentinized upper mantle) is subducted
globally each year; approximately 5 to 20% of this water
(0.1 to 0.4×1012 kg water/year) is subsequently
incorporated into arc magmas (Peacock, 2004). The
porosity of ocean crust contains an estimated nearly 2%
of the total volume of the oceans (2×107 km3 of
1.3×109 km3; Johnson and Pruis, 2003). Where the
dense, cold seawater flows in proximity to magma
upwelling at plate boundaries, the seawater is heated,
expands and buoyantly rises in sub-seafloor hydro-
thermal convection systems with discharge temperatures
up to ∼400 °C that dissolve and transport metals from
the crust and that may entrain metal-rich magmatic
fluids (Urabe, 1987; Hedenquist and Lowenstein, 1994;
Yang and Scott, 1996; Williams-Jones and Heinrich,
2005). Serpentinization reactions produced when sea-
water hydrates peridotites of the upper mantle provide a
secondary source of heat that can raise water tempera-
ture to 100 °C or higher depending on rates of heat
production and extraction (Fyfe and Lonsdale, 1981;
Francis, 1981; Macdonald and Fyfe, 1985; Lowell and



Fig. 1. Global distribution of known marine mineral resources (modified from Rona, 2003).
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Rona, 2002; Schroeder et al., 2002; Blackman et al.,
2006). The metal-rich hydrothermal fluids concentrate
high-temperature (sulfides) and low-temperature (oxi-
des, oxyhydroxides, silicates) mineral deposits at sites
along plate boundaries. Magmatic deposits may form in
the lower crust and upper mantle. The estimated current
production rate of oceanic lithosphere is 2.94 km2/year
(Chase, 1972). A global mass rate of hydrothermal fluid
flow of 1.3–2.7×1017 g/year is calculated from the
amount of cooling required to account for a discrepancy
between the calculated amount of heat generated by
emplacement of new lithosphere (Wolery and Sleep,
1976) and lower values of conductive heat flow actually
measured at ocean ridges out to a distance from the
spreading axis equal to an age of ∼65 million years.
Values of hydrothermal fluid flow approach the flux of
river water to the oceans of 3.8×1019 g/year (Mottl,
2003). An estimated 33% of the net hydrothermal heat
flux occurs within 1 million years of the spreading axis
(3.2×1012 W; Stein et al., 1995), with the balance
occurring off-axis. The fluid flow rate cited implies that
the entire mass of the oceans (13.7×1020 kg; Garrels
and Mackenzie, 1971) cycles through the lithosphere at
ocean ridges in 5 to 11 million years (Wolery and Sleep,
1976). Anomalous tectonic and magmatic conditions
focus high-temperature fluid flow and concentrate
mineral deposits at localized sites along plate bound-
aries within this overall scheme (Rona, 1988; Scott,
1997).

Marine minerals are considered in terms of types
derived from sources on land, types from sources at sub-
merged plate boundaries, and a combination of terrestrial
and marine sources. In addition to natural boundaries,
jurisdictional boundaries have been designated by the
United Nations Convention on the Law of the Sea
(UNCLOS), which recognizes a 200 nautical mile
(370 km)-wide Exclusive Economic Zone (EEZ) under
the jurisdiction of adjacent coastal states (McBryde, 1982;
Broadus, 1987; Cronan, 1992), and an international zone
designated the Area beyond that boundary declared as the
“common heritage of mankind” with mineral resources
under the jurisdiction of the United Nations (United
Nations, 1997). UNCLOS was opened for signature in
1982 and entered into force in 1994, incorporating a
provision for marine mining in the international Area that
was renegotiated to meet industrial concerns, including
protection of proprietary technology (United Nations,
1997, Part XI). The International Seabed Authority (ISA)
is an independent international agency created by
UNCLOS in 1994 upon the entry into force of the 1982
Convention through which States Parties to the Conven-
tion organize and control exploration for, and exploitation
of the mineral resources of the deep seabed beyond the
limits of national jurisdiction (International Seabed
Authority, 1999, 2001a, 2003, 2006; Nandan et al.,
2002; Antrim, 2005; website http://www.isa.org.jm/).

3. Marine minerals from terrestrial sources

3.1. Placer deposits

Numerous sites are known globally on continental
shelves where placer deposits, primarily of metallic
heavy minerals, have been mechanically concentrated
by flowing water (Fig. 1) as a consequence of their
higher density (N3.2 g cm−3) relative to the bulk of
detrital minerals consisting mostly of quartz and
feldspar (2.5–2.7 g cm−3). The resistance of a mineral
(hardness, cleavage, density, solubility) to mechanical
action during transport determines the distance it can be
transported from its source without material change of
state (Kudrass, 2000; Yim, 2000). The median distance
of transport from a bedrock source to an offshore placer
deposit is 8 km (Emery and Noakes, 1968). An
outstanding feature of the distribution of placer deposits
is the multitude of coastal sites known and the few of
these sites of past or present mining (Table 3).

Three generic types of placer deposits are recognized
(Kudrass, 2000): (i) disseminated beach placers usually
containing light heavy minerals (densityb6 g cm−3;
e.g., rutile, ilmenite, magnetite, monazite, zircon,
sillimanite, garnet), which are concentrated by waves
and longshore currents; (ii) drowned fluviatile placers
comprising coarse sand and gravel overlying the bottom
of river channels containing heavy metals (e.g.,
cassiterite, gold); and (iii) eluvial or lag deposits also
containing heavy metals. Placer deposits may lie above,
at, and below present sea level related to the history of
regional and eustatic sea level change. In the geologic
record, fluviatile placers are the presently most im-
portant from an economic point of view (Minter and
Craw, 1999). For example, the Archean gold deposits in
the Witwatersrand basin of South Africa (Frimmel et al.,
2005) are interpreted as a fan deposit at the mouth of a
river debouching into an intracratonic lake (Pretorius,
1991), although a hydrothermal origin has recently been
championed (Law and Phillips, 2005).

3.2. Phosphorite

Phosphorites, consisting of varieties of the heavy
mineral apatite, are distinguished from other sedimen-
tary rocks by their higher phosphorous pentoxide (P2O5)
contents (5 to 40%; Riggs, 1979; Bentor, 1980; Kudrass,

http://www.isa.org.jm/


Table 1
Marine mineral resources (modified from Rona, 1983b; Cruickshank, 1998)

Region Origin Mode of occurrence

Unconsolidated (mineral) Consolidated Fluid Heat

Continental Margin
(shelf, slope and rise)

Terrigenous
(derived by erosion and
weathering of rocks on land)

Non-metals
Beach deposit: siliceous sand

and gravel (quartz)
Placer deposit: diamond
Metals

Placer deposit: heavy mineral
and native metal concentrates

Barium (barite, witherite)
Chromium (chromite)
Gold
Iron (hematite,

magnetite, siderite)
Rare-earth elements

(monazite, basanite)
Tin (cassiterite)
Titanium (ilmenite, rutile)
Thorium (monazite)
Tungsten (scheelite, wolframite)
Zirconium (zircon)
Beach or placer deposit:

iron sands (glauconite)
Placer or solid layered deposit:

phosphorite (apatite, fluorapatite, etc)
Cobalt–iron–manganese–platinum crusts
Phosphorite
Potash
Salt (halite; sodium chloride)
Sulfur (pure and as sulfate)

Diagenetic (produced by
alteration of existing material)

Placer deposit: phosphorite
(apatite, fluorapatite, etc.)

Solid layered deposit: (phosphorite)

Volcanogenic
(derived from volcanoes)

Lode and vein deposits (all elements)

Massive sulfide deposits
(copper, iron, zinc, silver gold)

Freshwater Geothermal energy
Seawater solutes
Salt (halite; sodium chloride)
Magnesium
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Magnesium compounds
Bromine
Others
Bicarbonate, boric acid,
calcium, fluorite,
potassium, strontium,
sulfate, thorium

Biogenic
(derived from organisms)

Beach deposit: lime
(calcite, aragonite) mud
and sand, shells
Precious coral
Pearl (primarily cultured)

Coal
Limestone
Gas hydrates (methane)
Sulfur (pure and as sulfate)

Petroleum (oil and gas)
Hydrogenetic (authigenic;
precipitated from seawater)

Lime (calcite, aragonite),
mud and sand, shells

Meteoric
(derived from the atmosphere)

Fresh water
(desalination of seawater)

Ocean Basin Biogenic Hydrogenetic
(authigenic)

Manganese nodules
(manganese, iron,
nickel, colbalt, copper)

Methane hydrate Petroleum (oil and gas)

Cobalt–iron–manganese–platinum crusts
Volcanogenic Metalliferous sediments

(manganese,
iron, copper, lead, zinc,
gold, silver)

Manganese encrustations
Massive sulfides
(copper, iron, zinc, silver, gold)
Copper–nickel sulfides, platinum-group
elements, chromite deposits
Sulfur (pure and as sulfate and sulfide) Hydrothermal fluids

(heat and metals)
Geothermal energy

Magmatic
(derived from magma)

Copper–nickel sulfides, platinum-group
elements, chromite deposits

Magmatic fluids
(heat and metals)

Geothermal energy
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Table 2
Plate boundaries and associated mineral and energy occurrences

Type of plate boundary Potential mineral occurrences Potential energy occurrences References

Divergent: spreading axes
of ocean ridges and
back-arc basins

Metalliferous sediments
(Cu, Fe, Mn, Pb, Zn, Ba,
Co, Ag, Au; e.g., Atlantis II
Deep of Red Sea)

Geothermal Naldrett (1989, 2004); Rona
and Scott (1993);
Hannington et al. (2004)

Stratiform Mn- and Fe-oxides,
hydroxides, and iron silicates
(e.g., sites on Mid-Atlantic
Ridge and Galapagos Spreading
Center; fore-arc volcanoes and
back-arc basins

Hydrocarbons at early stage of rifting and
opening of an ocean basin (e.g., Red Sea;
Atlantic continental margins; back-arc
basins of western Pacific region)

Massive sulfides, including stockworks
(Cu, Fe, Zn, Ag, Au; e.g., sites on
East Pacific Rise, Galapagos Spreading
Center, Mid-Atlantic Ridge, Central
Indian Ridge, fore-arc volcanoes and
back-arc basins of western Pacific)
Magmatic sulfides in disseminated or
segregated form (Cu, Ni, PGE;
upper mantle in ocean basins
and volcanic island arcs)
Chromite: chrysotile: upper mantle
in ocean basins and volcanic island arcs

Convergent offshore: fore-
arc volcanoes and back-
arc basins in island arc
systems

Massive sulfides and stratiform Mn-
and Fe-oxides, hydroxides, and iron
silicates (e.g. Tonga–Kermadec fore-arc
volcanoes and Manus back-arc basin)

Geothermal hydrocarbons Mitchell and Garson (1981);
Sawkins (1990); de Ronde
et al. (2003a)

Convergent onshore:
volcanic island arcs and
continental margins

Ophiolites containing same types of
mineralization as at divergent
plate boundaries (e.g., sites at former or
present collisional plate boundaries

Geothermal Mitchell and Garson (1981);
Sawkins (1990); de Ronde
et al. (2003a)

Porphyry deposits (Cu, Fe, Mg, Sn,, Mo,
Zn, Ag, Au; e.g., sites in the Andes)
Mineralization in granitic rocks
(Au, Sn, and U)
Massive sulfides (Cu, Fe, Pb, Zn, Ag, Au,
Ba; e.g., Kuroko-type deposits)

Transform offshore: offsets
of spreading axes

Generally only minor mineralization of
similar types to those within spreading
segments of ocean ridges

Bonatti (1981); Rona and
Scott (1993); Hannington
et al. (2004)
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2000). Phosphorite is used mainly in the phosphate fer-
tilizer industry. Phosphorite deposits are part of a bio-
geochemical cycle that involves dissolution and
transport of phosphorous by rivers into the ocean, up-
take by marine plankton, transfer into deep water masses
by sinking and dissolution, return to surface water by
upwelling, and deposition as hydrogenetic (authige-
netic) precipitates and by diagenetic replacement of
carbonates (Burnett, 1990). Phosporites occur in four
seafloor settings (Hein et al., 2005): (1) continental
shelves and slopes off the west coast of landmasses
where easterly trade winds blow offshore (latitudes
30°N to 30°S) and induce upwelling; examples are
phosphorite deposits of recent age at five localities:
offshore Peru and Chile (Veeh et al., 1973; Burnett,
1977, 1990); offshore Namibia (Baturin et al., 1972;
Veeh et al., 1974; Baturin, 1982); offshore eastern
Australia (O'Brion et al., 1981); offshore Baja Califor-
nia in Mexico (Jahnke et al., 1983); and offshore the
Atlantic margin of Morocco (Summerhayes and
McArthur, 1990); (2) phosphorites formed by cementa-
tion and replacement of carbonates on submarine
plateaus and banks like the Blake Plateau off south-
eastern United States (Manheim et al., 1980) and the
Chatham Rise off New Zealand (Kudrass, 1984);
(3) islands and atolls where the source of phosphorous
is primarily guano and phosphorite has been mined; an
example is the island of Nauru in the southwestern



Table 3
Developed marine mineral deposits (Lenoble et al., 1995)

Name Commodity Type of deposit Water depth
(m)

Location

(Latitude, longitude)

Non-metals
Coastal zone Sand and gravel Beach 0 Multiple sites worldwide
Coastal zone Water/ice Fluid and solid 0 Multiple sites worldwide
Groen River Diamond Unconsolidated

placer
25 South Africa

30.5°S, 17.6°E
Chameis Bay Diamond Placer 0–25 Namibia
28.0°S, 15.7°E
Broadacres Diamond Placer 0.5 South

Africa31.6°S, 18.2°E
Casuarina Prospect
(Inactive) Diamond Placer 30 Australia
14.4°S, 127.8°E
Hayward San Leandro Lime (shell fragments) Beach

0 San Francisco Bay, USA
37.7°N, 122.1°W
Laucala Bay Lime

(coral sand)
Beach 0 Fiji

18.2°S, 178.5°E
Faxa Bay Lime

(shells)
Beach 35 Iceland

65.5°N, 22.5°W
Vembanad Lime

(shells)
Beach 0 India

9.6°N, 76.3°E
Bahia Coast Lime

(algae and shells)
Beach 0 Brazil

13.0°S, 38.5°W
Cape Breton Islands Coal Consolidated layers Canada
46.2°N, 60.9°W
Sunderland Coal Consolidated layers England
54.9°N, 1.4°W
Torre de Geco Coral Unconsolidated 5–300 Naples Bay, Italy
40.8°N, 14.5°E

Metals
Thai Muang Tin Placer 10 Thailand
8.5°N, 98.2°E
Tongkah Harbour Tin Placer 20 Thailand
7.9°N, 98.5°E
Takua Pa Tin Placer 0–18 Thailand
9.0°N, 98.3′ E
Copat Kelabat Bay Tin Placer 0–1 Indonesia
1.6°S, 105.7°E
Laut Tempilang Tin Placer 10 Indonesia
2.2°S, 105.7°E
Belitung (Billiton) Tin Placer 10–20 Indonesia
3.0°S, 108.2°E
Heinze Basin Tin, tungsten Placer 16–30 Myanmar
14.7°N, 97.8°E
Nome
(Presently inactive) Gold Placer 18–20 Alaska, USA
64.5°N, 165.4°W
Bluff Soloman
(Presently inactive) Gold Placer 0–10 Alaska, USA
64.6°N, 164.4°W
Gillespies Beach Gold Placer 0–15 New Zealand
43.4°S, 169.8°W
Richard's Bay Titanium, zirconium Placer 0–30 South Africa
28.8°S, 32.0°E

(continued on next page)
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Table 3 (continued)

Name Commodity Type of deposit Water depth
(m)

Location

(Latitude, longitude)

Metals
Fort Dauphin Titanium, thorium, rare earths,

zirconium
Placer 0 Madagascar

25.0°S, 47.0°E
Kanniyaknmari
Manavalakurichi

Titanium, zirconium, thorium Placer 0 India

8.2°N, 78.5°E
Chatrapur Titanium, zirconium, thorium Placer 0 India
19.4°N, 85.0°E
Castle Island Barium Consolidated layered

material
0–5 Alaska, USA

56.8°N, 133.0 W
Sulawesi Chromite Placer 0 Indonesia
2.0°S, 121.5°E
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Pacific; and (4) intra-plate seamounts which remain to be
investigated. Most phosphorites on the present seafloor
are ofMiocene age. Present mining of phosphorite is from
deposits on land that formed during past higher stands of
sea level. The extensive untapped phosphorite deposits on
westward-facing continental shelves within the trade
wind belt constitute a potential future resource for
agriculture in nations within that belt like India (Fig. 1).

3.3. Distribution of marine placers and phosphorite

Regional maps show the known distribution of
deposits derived from terrestrial sources and concen-
trated on continental shelves by mechanical and
chemical processes (Figs. 2–7; modified from Rona
and Lenoble, 2004; Table 3). The realm of placer
deposits can extend to continental slopes, rises, and
abyssal plains where they are presently inaccessible. A
primary source for construction of these maps is the
MARMIN database (Lenoble et al., 1995) with additional
references, as noted. Placer deposits that are undeveloped
are distinguished on the maps from those deposits that are
or have been mined (developed; Table 3).

North America and Central America (Fig. 2; Table 3):
Gold is intermittently mined offshore Alaska contingent
on market price (presently inactive). Placer deposits of
gold derived from nearby primary deposits and re-
deposited as glacial moraines in more widespread thin,
lag gravels, were first mined in 1900 on the present
beach of Nome (Garnett, 2000a). Gold was also mined
from shallow submerged, buried paleobeaches and abra-
sion platforms cut into the moraines above bedrock.
Glacial till with locally high gold grades extend nearly
5 km offshore in water depths up to 20 m. Gold is less
mobile than other heavy minerals of equal particle size
owing to its high density (15 to 19.3 g cm−3), so that
economic concentrations generally occur within kilo-
meters of a source (Garnett, 2000a). A bucket-ladder
dredge that had been operated as a cassiterite producer in
calmer waters offshore Indonesia was adapted to perform
much of the mining. Later, a track-mounted mining
system deployed on the seabed from an anchored barge,
the beach, or sea-ice enabled selective recovery of high
grades. Although terminated in 1990, the Alaskan
operations are the only example of commercial recovery
of marine gold placer deposits (Garnett, 2000a), with the
exception of a site intermittently mined offshore New
Zealand (Fig. 7). Investigations of placer gold offshore
New South Wales, Nova Scotia, West Africa, East
Malaysia (Sarawak), and Siberia have yet to identify
commercial deposits.

Placer deposits other than gold that occur offshore
North America are largely undeveloped. Consolidated
layers containing barium have been mined on Castle
Island off Alaska. Extensive phosphorite deposits in the
form of nodules and crusts lie in shallow water of the
Pacific continental shelf of California and Baja California
(Baturin, 1982; Jahnke et al., 1983). A province of relict
phosphorites is present to water depths of 1 km on the
Blake Plateau off southeastern North America (Manheim
et al., 1980). Miocene deposits of southeastern North
America (Riggs, 1979), deposited at former higher stands
of sea level and presently exposed on land are mined.
Lime (calcium carbonate) is dredged from shallow water
areas where precipitating on the BahamaBanks, a shallow
subsiding submarine carbonate plateau constructed of
layers of limestone attaining a thickness of kilometers off
southeastern Florida. An underground coal mine extends
offshore in the Cape Breton Islands of Canada. Sand and
gravel are recovered at many sites in the coastal zone of



Fig. 2. Offshore mineral map of North America.
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Canada and the United States primarily for beach
restoration and shore protection. Beds of Jurassic
(Tithonian) salt up to kilometers in thickness underlie
sediments of the continental margin off eastern North
America and the Gulf of Mexico.

The continental margins of Central America are
practically unexplored for placer deposits with few
exceptions (e.g., recycling of Late Tertiary placer gold
off Costa Rica; Berrangé, 1989; Kriz, 1990). Porphyry
mineralization at sites in volcanic belts along the west
coast of Central America generated by subduction of the
Cocos plate (Sawkins, 1990) suggests potential for
metallic mineral placers (Fig. 2).

South America (Fig. 3): The continent of South
America is noted for Andean Cu–Mo–Au porphyry and
massive sulfide deposits related to volcanism generated
by eastward subduction of the Nazca plate (e.g., Camus
and Dilles, 2001). The middle Eocene to early Oligocene



Fig. 3. Offshore mineral map of South America.
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belt of the central Andes contains the largest concentration
of Cu resources known in the world (Sillitoe and Perello,
2005). The apparent absence of metallic placer deposits
along the western continental margin seaward of the
mineralized zones, except for a few placer gold occur-
rences offshore Ecuador, Chile, and Tierra del Fuego
(R.H.T. Garnett, pers. comm..), is an artifact of the early
stage of exploration. Although desert conditions presently
prevail along a large section of western South America,
rivers may have transported metallic minerals from the
Andean deposits to the coast under former pluvial
climates. Accordingly, the narrow western margin of
South America may have significant potential for metallic
placer deposits.

Phosphorite is precipitating on the Peruvian con-
tinental shelf from upwelling deep water (Burnett, 1977,
1990). Lime precipitated by marine plants is recovered
from the Brazilian shelf. Kilometers-thick layers of



Fig. 4. Offshore mineral map of Africa.

Fig. 5. Offshore mineral map of Europe.
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Fig. 6. Offshore mineral map of Asia.

Fig. 7. Offshore mineral map of Oceania.
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Aptian salt are present in basins underlying the Brazilian
margin where salt structures are associated with offshore
petroleum (Rona, 1982).

Africa (Fig. 4; Table 3): A large placer diamond
province encompasses beaches and the adjacent con-
tinental shelf from 100 m above to at least 200 m below
sea level and extends between 450 km south and 300 km
north of the present Orange River that bounds Namibia
and South Africa (Garnett, 2000b, 2001). More than
75 million ct of diamonds have been produced from this
section of the Namibian coast (“Sperrgebeit” = “for-
bidden territory” from German heritage; also known as
Diamond Area 1 extending 5.5 km offshore and 20–
35 km inland) over nearly 100 years, 95% of which are
gem quality, making this the richest diamond placer
known (Schneider and Miller, 1992; Oosterveld, 20003).
The diamonds (density 3.5 g cm−3) were eroded from
numerous Cretaceous kimberlites in the interior of
southern Africa and transported hundreds of kilometers
westward to the South Atlantic coast by a system of rivers
represented by paleo-channels and the present Orange
River since at least Middle Eocene times reflecting a Late
Cretaceous regional sub-continental uplift that initiated
deep fluvial incision and has continued intermittently
through much of the Cenozoic (Spaggiari et al., 2006).
The diamondswere redistributed from paleo-river mouths
onto ancient beaches, and seaward of the beaches by
waves and longshore currents during sea level changes
inferred to have ranged from ca. +180 m to −120 m
relative to present mean sea level (Spaggiari et al., 2006).
Diamonds decline in size and value with distance from
source (Garnett and Bassett, 2005). Within the overall
scheme, diamond grades tend to increase from onshore to
offshore related to properties of the diamonds and the
amount of reworking by water motions, which concen-
trated the diamonds in drowned paleobeaches and trapped
them in shallow depressions in bedrock underlying thin
overburden. In Namibia recovery by a contractor (De
Beers Marine; 50:50 joint venture with the Namibian
Government Namdeb Diamond Corporation Ltd.) of
high-quality marine diamonds using seafloor mining
machines and drills on 4 offshore production vessels
increased from 30,000 to N570,000 ct (1 ct=0.2 g)/year
over the last decade (EMI Placer Stockfile website http://
www.mine.mn/Placer_Stockfile_De_Beers.htm). The
offshore recovered grade is 0.2 ct/m2 at US$298/ct with
estimated current production valueNUS$1700 million.
Average diamond values per carat for a given diamond
occurrence may vary by three orders of magnitude (US$1
to $1000/ct; Gurney et al., 2005). The estimated total
value of global diamond production (marine and non-
marine) in 2004 was US$11,800 million (Business Day,
2005). Exploration for marine diamonds has also been
conducted offshoreWest Africa, Australia, and Indonesia,
but without commercial success.

Placer deposits containing titanium, thorium, rare earth
elements and zirconium have been mined at a location on
the southeast coast of Madagascar (Fig. 5; Table 2). The
Corridor Sands (1765 million tonnes containing 73 mil-
lion tonnes of ilmenite at an estimated average ilmenite
grade of 4.14%; Mining Review Africa, 2003) and the
Moma disseminated beach deposits (estimated 60 million
tonnes of ilmenite; Planet Ark, 2003) onshore near the
coast ofMozambique are both under development and are
considered, respectively, the world's largest and second
largest undeveloped resources of titanium dioxide (TiO2).
With reference to phosphorite, both relict (principally
Miocene) and modern deposits occur on the northwestern
continental shelf of Africa offshore Morroco (Summer-
hayes and McArthur, 1990), Namibia (Thomson et al.,
1984), and South Africa (Birch, 1980; McArthur et al.,
1988).

Salt layers up to several kilometers thick lie buried
beneath western and eastern South and North Atlantic
continental margins and intrude overlying sediments as
diapirs (Figs. 2, 3 and 4). The salt was deposited at early
stages of opening of the North Atlantic in the Jurassic
period and of the South Atlantic in the Aptian stage of the
Cretaceous of the South Atlantic. At those times the
Atlantic was a sea with circulation restricted by the
positions of the surrounding continents, causing evapora-
tion to exceed inflow and precipitation of salt and organic
matter (Rona, 1969, 1982). The salt is associated with
petroleum production and potential at sites on continental
margins ofWest Africa (e.g., Meyers et al., 1996), eastern
South America, eastern North America and the Gulf of
Mexico.

Europe (Fig. 5): Numerous marine metallic mineral
placer deposits are identified, but none have been
developed. Layers of Miocene salt up to kilometers in
thickness are buried beneath sediments under large areas
of the Mediterranean Sea, where the salt was deposited
under former conditions of restricted ocean circulation
(Hsü, 1983). Undeveloped phosphorite deposits lie ad-
jacent to areas of deep ocean upwelling on the Atlantic
continental shelf of northern Spain (Lamboy and Lucas,
1979). An underground coal mine extends seaward on the
east coast of England. Coral recovery is an industry in the
Bay of Naples and salt recovery from evaporation of sea-
water is practiced at many places around the Mediterra-
nean and western France.

Asia (Fig. 6; Table 3): A diverse suite of marine
metallic placer deposits exists on the continental margins
of Asia. Of these various deposits, placers of the tin
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mineral cassiterite offshore Southeast Asia are the
principal deposits that have undergone sustained mining.
The Southeast Asian tin deposits generally occur in belts
genetically related to terrestrial granitoids or their volcanic
equivalents and were concentrated by fluvial processes
involving selective or hydraulic sorting (Yim, 2000).
Cassiterite with high density (∼7), moderate hardness
(6–7), a brittle nature, and poor cleavage, has low trans-
portation resistance and occurs near the source rock. The
deposits lie offshore Myanmar, Thailand, Malaysia, and
Indonesia at sites adjacent to outcrops of Carboniferous
and Mesozoic granites on the east and west sides of the
Malaysian peninsula, respectively (Hosking, 1971). The
estimated value of annual tin production from marine tin
placers offshore Thailand and Indonesia in 1968 was US
$24 million (Cruickshank et al., 1968). Titanium-rich
placer magnetite has been mined from the northwestern
coast of New Zealand (North Island) and Indonesia
(Java), the Philippines (Luzon), and Japan (Hokkaido;
Kudrass, 2000). Numerous undeveloped placer deposits
of light heavyminerals (ilmenite, rutile, magnetite, zircon,
garnet, and monazite) are present on beaches and offshore
the Indian sub-continent (Roonwal, 1986; Rajama-
nickam, 2000) and P. R. China (Institute of Marine
Geology, 1988; Tan et al., 1996). Gold and tin placers on
the Arctic shelf of Siberia are in an early stage of
investigation (Patyk-Kara, 1999).

Oceania (Fig. 7; Table 3): The titanium minerals
rutile and ilmenite have been mined from beach sand in
southeast and southwest Australia (Roy, 1999). The
other Australian coasts are relatively unexplored for
such deposits (CSIRO, 2006). Phosphorites in the form
of nodules occur on the outer shelf and upper slope of
eastern Australia. A placer gold deposit has been
intermittently mined off New Zealand. The iron–
titanium-rich placer magnetite has been mined from
the northwestern coast of New Zealand (North Island)
and Indonesia (Java; Kudrass, 2000). Placer chromite
has been produced from a site on the east coast of the
Indonesian island of Suluwesi. An extensive field of
phosphorite nodules with an average P2O5 content of
22% lie between water depths of 350 m to 450 m on the
crest of the Chatham Rise east of New Zealand
(Kudrass, 1984; von Rad and Kudrass, 1984; Cullen,
1986; Exon et al., 1992).

3.4. Marine sand and gravel

Marine sand and gravel are transported to the coast
by rivers and concentrated in beaches and longshore
bars by waves and longshore currents. The sand and
gravel are presently the most extensively mined, utilized
and valued of all marine mineral resources because
aggregates (sand and gravel) are universally used for
construction (concrete), and sand is dredged for beach
restoration, shore protection and deepening of channels
in harbors (Cruickshank, 1988). Aggregate sites are too
numerous to show on the maps (Figs. 1–7). Estimated
global annual production value of marine sand and
gravel for 2000 was about US$3000 million based on
production amounts (millions of tonnes) at US$15/tonne
(UK 24, Netherlands 36, Denmark 18, Belgium 3,
France 3, Poland 0.5, Norway 0.1, Germany 7, Japan 70;
D.J. Harrison, British Geological Survey, pers. comm.). A
conservative estimate of United States annual production
of marine aggregate of 31 million tonnes is based on the
average volume used for beach nourishment between
1990 and 2007 from the Program for the Study of Devel-
oped Shorelines database (21,069,482 yd3; http://psds.
wcu.edu/1038.asp; A. Coburn, Western Carolina Uni-
versity, pers. comm.), with the addition of 10% for marine
aggregate used for construction material, and conversion
from cubic yards to tonnes (density for dry mixture of
sand and gravel 1727 kg/m3; Ontario Stone, Sand and
Gravel Association, 2006). Canada is not a big producer
of aggregate from the marine environment (D. Pangapko,
Natural Resources Canada, pers. comm.).

3.5. Marine solutes

A number of materials are extracted from seawater at
some 300 coastal operations in 60 countries, including
rock salt (sodium chloride), magnesium metal, magne-
sium compounds, and bromine (Table 1). Of these,
freshwater extracted from seawater by desalination
processes is the most critical mineral, in light of the
global need for an adequate and safe supply of water for
consumption, agriculture and industry. Desalination by
reverse osmosis and other processes is energy intensive.
The oceans are the largest reservoir for water on Earth.
Production of freshwater from seawater is expected to
exceed that from all other marine minerals in importance
and value as need continues to grow and alternative
energy sources for the desalination process are devel-
oped (Revenga et al., 2001; Newton et al., 2006;
UNESCO, 2006; UNESCO Water Portal at http://www.
unesco.org/water).

4. Marine minerals from sources in ocean basins

4.1. Metalliferous sediments

The metalliferous sediments of the Atlantis II Deep
discovered in 1965 at the spreading axis of the central

http://psds.wcu.edu/1038.asp
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Table 4
Resource potential of metalliferous sediments of the Atlantis II Deep,
Red Sea

Metal Grade
(wt.%, dry salt-free basis)

Weight
(tonnes; dry salt-free basis)

Metalliferous
sediments

89,500,000

Zn 2.06 1,838,000
Cu 0.45 404,000
Ag 38.4 g/tonne 3432
Au 0.5 g/tonne 45

Data from Mustafa et al. (1984), Nawab (2001).
1 tonne=1 metric ton=1000 kg; Co, and Cd also recoverable.
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Red Sea are the first hydrothermal deposit found at a
submerged divergent plate boundary (Figs. 1 and 4;
Swallow and Crease, 1965; Miller et al., 1966; Degens
and Ross, 1969), and remain the most efficient ore-
forming system and the largest seafloor hydrothermal
deposit found to date. The Atlantis II Deep at a water
depth of 2 km is a parallelogram-shaped basin with sides
12 km long aligned with faults parallel to the spreading
axis and 5 km wide aligned with cross-axial transform
faults. It is the largest of a series of basins that lie at the
spreading axis between the African and Arabian plates.
Hydrothermal discharge in the Atlantis II Deep is the
source of spillover to two adjacent basins (Discovery
Fig. 8. Map of the TAG hydrothermal field in the axial valley of the Mid-Atla
oxides in parentheses; Zonenshain et al., 1989; Rona et al., 1993, 1998; deM
and Chain deeps). Rifting between Africa and Saudi
Arabia started at about 10 million years ago (Miocene)
and is generating oceanic lithosphere at a slow-
spreading full-rate (2 cm/year) having opened the
central Red Sea to its present 200 km width. The
margins of the Red Sea are underlain by evaporites up to
several kilometers thick that were deposited at an earlier
stage of opening when circulation was restricted by the
surrounding landmasses and evaporation exceeded
inflow of seawater through narrow straits. The hydro-
thermal ore-forming system present is inferred to
comprise downwelling of seawater through kilometers
of permeable transitional and ocean crust, nearly an
order of magnitude increase in salinity above that of
normal seawater (35 ppt) by flow in proximity to the
evaporites (salt is impermeable), upwelling of the ther-
mally expanded hyper-saline solutions, enhanced acqui-
sition and transport of metals from the ocean crust and
possibly magmatic effluents as chloride complexes; and
discharge into the basin (Scholten et al., 2000). The
density increase from dissolved salts more than com-
pensates for the thermal expansion resulting in stable
density stratification of the venting solutions trapped
within the Atlantis II basin. Metallic sulfides, oxides,
and hydroxides precipitate from the ponded solutions
and settle to form layers of unconsolidated metalliferous
ntic Ridge near 26°N, 45°W (radiometric ages of massive sulfides and
artin et al., 2007).
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sediments up to 30 m thick hosted in basaltic ocean crust
(Bäcker, 1980; Blissenbach and Nawab, 1982; Mustafa
et al., 1984).

The Saudi–Sudanese Joint Red Sea Commission
oversees the development of the Atlantis II Deep deposit
located within the overlapping 200 nm-wide Exclusive
Economic Zones of the bordering coastal states (Mustafa,
1979; Mustafa et al., 1984; Nawab, 1984, 2001). The
Commission sponsored a survey by the German geophy-
sical company Preussag (Amann, 1985) followed by a
pre-pilot mining test in 1979, which demonstrated the
feasibility of using hydraulic dredging from a modified
offshore petroleum drilling vessel (Sedco 445) to recover
a sample of the metalliferous sediments (15,000 tonnes)
and shipboard flotation techniques to separate the
metalliferous component (4 tonnes of concentrate con-
Fig. 9. Schematic cross-section through the TAG active massive sulfide mou
seafloor VMS deposit based on results of Ocean Drilling Program Leg 158
taining up to 30wt.%Zn, 4wt.%Cu and 600 g/tonneAg).
According to Nawab (2001), “The gold content is low; it
has not been systematically determined in core samples,
but has been recovered in bulk sulfide-flotation concen-
trates”. An estimate of gold content is 0.5 g/tonne
(Mustafa et al., 1984). Estimated grade and tonnage
based on statistical analysis (two-dimensional kriging) of
the composition of 605 cores are presented in Table 4
(Mustafa et al., 1984; Nawab, 2001). The resources
are considered adequate to support an average annual
production of 60,000 tonnes of Zn, 10,000 tonnes of Cu,
100 tonnes of Ag, and 1 tonne of Au for a period of
approximately 20 years, with initiation of mining con-
sidered contingent on primarily market conditions
(Nawab, 2001). The small size of the particles (clay)
may prove difficult to refine.
nd (Fig. 8) showing characteristic surface and sub-surface features of a
(Rona, 1992; Hannington et al., 1995; Humphris et al., 1995a,b).
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As seafloor spreading continues, the Red Sea may
widen into an ocean like the Atlantic. Relict metalliferous
hydrothermal deposits may be present in ocean crust
aligned along flow lines of seafloor spreading extending
away from the spreading axis depending on the position,
persistence, and episodicity of axial hydrothermal ore-
forming systems (Rona, 1973, 1985). Metalliferous
sediment deposits like those forming at the Atlantis II
Deep are expected to be present buried kilometers beneath
sediments at sites along rifted continental margins of
ocean basins like the Atlantic that underwent a Red Sea
stage early in their opening. Metalliferous sediments are
also a byproduct of hydrothermal systems at ocean ridges
and volcanic island arcs (Gurvich, 2006).

4.2. High-temperature massive sulfides

Volcanogenic massive sulfide (VMS) deposits were
first found in mafic ocean crust of an ocean basin at the
intermediate-spreading rate (full-rate 6 cm/year) axis of
the East Pacific Rise at 21°N, 103°W in 1978
(CYAMEX, 1979; Francheteau et al., 1979; Hekinian
et al., 1980). In the following year high-temperature
metal-rich solutions (350 °C) were found discharging
from sulfide chimneys as “black smokers” at the same
location (RISE, 1980). The scientific consensus at that
time was that the thermal regime of intermediate- to fast-
spreading ocean ridges in the Pacific was required to
drive high-temperature hydrothermal activity that con-
centrates VMS deposits and that size of a deposit may
vary directly with spreading rate (use of the term
“massive” refers to mineralization of at least 60%
sulfide and carries no textural connotation; Sangster and
Scott, 1976). Slow-spreading ocean ridges (full-
rateb4 cm/year) were ruled out for high-temperature
Fig. 10. Diagrammatic east–west cross-section of the Pacific Ocean between
mineralization associated with convergent (subduction zones) and divergent
(modified from Rona, 1983b; Sillitoe and Perello, 2005).
hydrothermal activity in spite of the earlier discovery of
the Atlantis II Deep deposit at the slow-spreading axis of
the Red Sea, which was then considered an anomaly of
an early stage of opening of an ocean basin. Accord-
ingly, initial VMS exploration at that time focused on
the axial zone of intermediate-to-ultrafast spreading
portions of the East Pacific Rise between 21°N and 32°S
(full-rate 6 to 18 cm/year), which were considered most
prospective (Bäcker, 1980; Bäcker et al., 1985; Marchig
et al., 1987, 1988). Although an estimated 66% of
hydrothermal heat and water flow occurs on the flanks
of ocean ridges out to a distance equal to a crustal age of
65 Ma (Stein et al., 1995), it is presumably low-
temperature flow (e.g., Benjamin and Haymon, 2006).
Magmatic systems that drive high-temperature hydro-
thermal activity that concentrates sulfides on ocean
ridges primarily underlie the axial zone where the
lithosphere forms.

The discovery, in 1985, of the first black smokers,
VMS deposits and vent biota in the Atlantic Ocean at the
TAG (Trans-Atlantic Geotraverse) hydrothermal field
on the Mid-Atlantic Ridge near 26°N, 45°W (Rona
et al., 1986; Figs. 8 and 9), opened to hydrothermal
exploration the slow-spreading ocean ridges in the
Atlantic, Indian, and Arctic oceans, comprising more
than half the ∼55,000 km global length of ocean ridges.
Since that time massive sulfides have been found in a
variety of tectonic settings at the full range of spreading
rates (Fig. 1; Rona and Scott, 1993; Herzig and
Hannington, 1995; Hannington et al., 2004) including
sediments of mafic ocean ridges (Escanaba Trough of
the Gorda Ridge, Morton et al., 1995; Fouquet et al.,
1998; Middle Valley of Juan de Fuca Ridge, Davis et al.,
1992; Fouquet et al., 1998); felsic rocks at sites at
spreading axes in back-arc basins (Halbach et al., 1989;
South America and southeast Asia showing settings for hydrothermal
(ocean ridges) plate boundaries and metallogenic zones of the Andes



Table 5
High-temperature hydrothermal systems with massive sulfide mineralization drilled by the Ocean Drilling Project (ODP)

Leg Year Location Site Results

I. Mafic-hosted volcanogenic massive sulfide (VMS) system
ODP 158 1994 Active high-temperature sulfide mound in

TAG hydrothermal field, Mid-Atlantic
Ridge near 26°08′N, 44°50′W

957 Drilled 17 holes to a maximum of 125 mbsf
(meters below sea floor) in lens and
stockwork of sulfide and sulfate hosted
in basalt (Humphris et al., 1995a,b)

II. Felsic-hosted volcanogenic massive sulfide (VMS) system
ODP 193 2000–2001 PACMANUS active high-temperature

hydrothermal system including sulfides
in Manus back-arc basin in the western
Pacific near 3°43′S, 151°40′E

1188–1191 Drilled and logged 13 holes to a maximum
of 387 mbsf with minor sulfides hosted
in altered dacitic to rhyodactic rocks
(Binns et al., 2002)

III. Sediment-hosted massive sulfide system
ODP 169 1996 Central Hill, an uplifted block in the

sediment-filled Escanaba Trough of the
southern Gorda Ridge near
41°00′N, 127°30′W

1038 Drilled 9 holes to a maximum of 404 mbsf
terminating in basalt, indicating that massive
sulfide forms only a thin veneer (5–15 m)
over the sediment sequence along the faulted
margin of Central Hill (Fouquet et al., 1996)

ODP 139 1991 An inactive massive sulfide body
(Bent Hill) and hydrothermal recharge
and reservoir zones in the sediment-filled
axial valley of the northern Juan de
Fuca Ridge near 48°26′N, 128°41′W

855–858 Drilled 8 holes to a maximum of 122 mbsf
through massive sulfide and sediment into a
basalt sill (Davis et al., 1992)

ODP 169 1996 An inactive massive sulfide deposit
(Bent Hill) and an active hydrothermal
field (Dead Dog) hosted in the
sediment-filled axial valley of the northern
Juan de Fuca Ridge near
48°26′N, 128°41′W

1035 (Bent Hill; 9 holes);
1036 (Dead Dog; 5 holes)

Drilled 9 holes to a maximum of 497 mbfs
(re-entry and logging of Leg 139 hole 856)
through sediment underlying the massive
sulfide deposit and into basalt flows at
Bent Hill; and 5 holes to a maximum
of 296 mbsf through sediments at
Dead Dog (Fouquet et al., 1998)
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Binns and Scott, 1993; Ishibashi and Urabe, 1995); and
in fore-arc volcanic calderas of volcanic island arcs
associated with convergent plate boundaries of the
western Pacific (Fig. 10; Iizasa et al., 1999; Herzig,
1999; Glasby et al., 2000; de Ronde et al., 2005; Stoffers
et al., 2006). The Ocean Drilling Program (http://www-
odp.tamu.edu/) has obtained information on the third
dimension of certain of these deposits by drilling three
types of high-temperature hydrothermal systems (Table 5)
comprising massive sulfides hosted in: 1) mafic ocean
crust (TAGon theMid-Atlantic Ridge); 2) sediments over
mafic ocean crust (Bent Hill in Middle Valley of the
northern Juan de Fuca Ridge); and 3) felsic ocean crust
(PACMANUS hydrothermal field in the Manus back-arc
basin). The present tally of∼300 sites of active and relict
hydrothermal mineralization known in these various
settings is an artifact of this early stage of exploration
when only about 5% of prospective seafloor settings have
been investigated in sufficient detail to find deposits
(Rona and Scott, 1993; Hannington et al., 2004). Only
some 100 of these sites hostmassive sulfides and only two
of these massive sullfide deposits are known to be over
1×106 tonnes (TAG on the Mid-Atlantic Ridge and
MagicMountain on the Explorer Ridge shown in Fig. 11).
In terms of jurisdictional boundaries, about 80% of the
global length of ocean ridges lies in the international
“Area” under the UNCLOS with mineral resources under
the management of the ISA (Fig. 11). The balance of the
global length of ocean ridges lies within the 200 nautical
mile-wide EEZ (Fig. 11; Table 6) under the jurisdiction of
coastal states. All the volcanic island arc systems lie
within the EEZ of coastal states.

Size, composition, and distribution of VMS deposits
is influenced by similarities and differences in morpho-
logic, tectonic, and magmatic characteristics that exist
between intermediate- to fast-spreading ocean ridges
and slow-spreading ocean ridges (Small, 1998; Carbotte
and Scheirer, 2004). Mineralization at ocean ridges, in
turn, exhibits differences from that at volcanic island
arcs. However, exceptionally large, high-grade deposits
are anomalies that can occur in any of these settings at
any spreading rate depending on the geologic controls

http://www-odp.tamu.edu/
http://www-odp.tamu.edu/


Fig. 11. World map showing plate boundaries, the 200 nautical mile-wide (370 km) Exclusive Economic Zone (EEZ; dashed line surrounding land),
and the international Area seaward of the EEZ. Sites are shown at plate boundaries where some of the larger massive sulfide deposits have been found
(Rona, 1983b; Rona and Scott, 1993; Andreev et al., 2000; Hannington et al., 2004). Only about 5% of submerged plate boundaries have been
explored in sufficient detail to find axial deposits and virtually none of the oceanic lithosphere away from present plate boundaries to find relict
deposits transported off-axis by seafloor spreading.
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that concentrate the mineralization (e.g., Schardt et al.,
2006). Salient characteristics of these settings are sum-
marized, as follows.

4.2.1. Intermediate- to fast-spreading ocean ridges
(full-rate of spreading 6 to 18 cm/year)

Ocean ridges at all spreading rates exhibit an axial
zone of magmatic intrusion and volcanic extrusion
flanked by marginal zones of extension (Fig. 12). The
typical cross-sectional form of fast-spreading ocean
ridge crests like the southern East Pacific Rise and
intermediate-spreading ridge crests like the Juan de Fuca
Ridge off northwest North America is that of a rise some
tens of kilometers wide with hundreds of meters relief
attributed to thermal expansion and volcanic construc-
tion (Fig. 12; Macdonald, 1986; Perfit and Chadwick,
1998; Small, 1998). A neovolcanic zone of extrusion
bisects the rise ranging from a narrow axial summit
trough (AST tens to hundreds of meters wide with walls
tens of meters high) on fast-spreading ridges, to a wider
axial valley (1 to 5 km wide) with faulted walls 50 to
1000 m high on ridges spreading at intermediate rates
(Kappel and Ryan, 1986; Macdonald, 1998; Perfit and
Chadwick, 1998). The axial summit trough and axial
valley are floored predominantly by basaltic lobate and
sheet flows representing relatively high effusion rates
(Bonatti and Harrison, 1988; Head et al., 1996). A
systematic variation exists on intermediate- and fast-
spreading ocean ridges such that lobate/sheet flows
dominate at segment centers and pillow flows and lava
domes are more common on segment ends suggesting
higher eruption effusion rates and magma pressure and
lower magma viscosity at segment centers relative to
segment ends (White et al., 2002, 2006; Soule et al.,
2005; Macdonald, 2005). Multi-channel seismic profil-
ing at sites along the spreading axis of intermediate- to
fast-spreading ocean ridges has imaged magma bodies 1
to 2 km beneath the seafloor interpreted to consist of a
thin lens (tens of meters thick) of partial melt overlying a
thicker zone of crystal mush (Sinton and Detrick, 1992;



Table 6
Submerged divergent plate boundaries (ocean ridges) within 200 nautical miles (370 km) of land within Exclusive Economic Zones of coastal states
(location identified by number in Fig. 11; modified from Rona, 1983b)

Location Ocean Oceanic ridge Land Country

1 Greenland SeaNorwegian Sea Mohns Ridge Svalbard Islands Norway
Jan Mayan Island Norway

2 Greenland SeaNorwegian Sea Iceland-Jan Mayan Ridge Jan Mayan Island Norway
Greenland Denmark
Iceland Iceland

3 Greenland SeaNorwegian Sea Kolbeinsey Ridge Iceland Iceland
4 North Atlantic Reykjanes Ridge Iceland Iceland
5 North Atlantic Mid-Atlantic Ridge Azores Islands Portugal
6 Caribbean Sea Cayman Spreading Center Cayman Islands Jamaica

Swan Island Honduras
7 Equatorial Atlantic Mid-Atlantic Ridge St. Peter and St. Paul Rocks Brazil
8 South Atlantic Mid-Atlantic Ridge Ascension Island United Kingdom
9 South Atlantic Mid-Atlantic Ridge Tristan de Cunha United Kingdom

Gough Island United Kingdom
10 South Atlantic Mid-Atlantic Ridge Bouvet Island Norway
11 South AtlanticScotia Sea Scotia Spreading Center South Sandwich Islands United Kingdom
12 Indian Ocean Southwest Indian Ridge Prince Edward Islands;

Marion Island
Republic of South Africa

13 Indian Ocean Carlsberg Ridge Chagos Archipelago United Kingdom
14 Indian Ocean Gulf of Aden Spreading Center Democratic Republic

of Yemen
Democratic Republic
of Yemen

15 Red Sea Red Sea Spreading Center Yemen Yemen
Saudi Arabia Saudi Arabia
Ethiopia Ethiopia
Sudan Sudan
Egypt Egypt

16 Indian Ocean Southeast Indian Ridge Amsterdam Island France
St. Paul Island France

17 Antarctic Ocean Pacific-Antarctic Rise Antarctica Australian Claim
Antarctica New Zealand Claim

18 Pacific Ocean Chile Rise Chile Chile
19 Pacific Ocean East Pacific Rise Easter Island Chile
20 Pacific Ocean Galapagos Spreading Center Galapagos Islands Ecuador
21 Pacific Ocean East Pacific Rise Mexico Mexico
22 Pacific Ocean Gulf of California

Spreading Center
Baja California Mexico

23 Pacific Ocean Gorda Ridge Oregon, California USA
24 Pacific Ocean Juan de Fuca Ridge British Columbia Canada
25 Pacific Ocean Endeavour Segment British Columbia Canada
26 Pacific Ocean Explorer Ridge British Columbia Canada

638 P.A. Rona / Ore Geology Reviews 33 (2008) 618–666
Detrick et al., 1993). A relatively high continuity of
magma supply and frequency of eruption rate (tens of
years) along axis is related to continuity of ridge
morphology, and with primarily axial focus of high-
temperature hydrothermal discharge and associated
mineralization (Lutz and Haymon, 1994; Perfit and
Chadwick, 1998).

Detailed surveys with temperature and suspended
particulate matter sensors towed along sections of
intermediate- to fast-spreading axes have found a direct
linear relation between spreading rate, magma supply,
and the spatial frequency of hydrothermal venting
(Baker and German, 2004; Baker et al., 2004). The
frequency of venting sites based on plume incidence
along the spreading axis ranges from about 1.5 to 4.5
sites per hundred kilometers for fast- to ultra-fast-
spreading rates on the East Pacific Rise at sites surveyed
from about 18°N to about 32°S, and intermediate-
spreading rates on the Juan de Fuca Ridge (Fig. 21 of
Baker and German, 2004). Examination of the seafloor at
many of these sites reveals that the sources generally are
isolated groups of active sulfide chimneys venting high-
temperature fluids (350° to 405 °C; combined thermal
output∼10MW; combined fluid flux 132–2885 cm3 s−1;
Table 2 in Hey et al., 2006) and occupying small areas
(hundreds of m2; Bäcker, 1980; Bäcker et al., 1985;



Fig. 12. Topographic cross-sections of ocean ridge crests showing axial zone of volcanic intrusion–extrusion and variation of morphology with
spreading rate (vertical exaggeration 4:1; Macdonald, 1986).

639P.A. Rona / Ore Geology Reviews 33 (2008) 618–666
Marchig et al., 1987, 1988; Holler, 1993; Rona and Scott,
1993). As stated by Marchig (2000), “Although hydro-
thermal activity is high in the southern part of the East
Pacific Rise, massive sulfide ores do not occur in large
amounts or as big edifices, first, because most of the
precipitates from the hydrothermal solutions get dispersed
to the surrounding sediment, and second, because the
edifices formed become covered with fresh lava flows”.

Exceptions include a large relict VMS deposit on the
flank of an off-axis seamount near 13°N on the East
Pacific Rise (Hekinian and Fouquet, 1985; Fouquet et al.,
1996), and the active Magic Mountain VMS mound near
49°N on the Southern Explorer Ridge off British
Columbia (250 m diameter, 18 m thick; estimated
5 million tonnes; Scott et al., 1990). The northern Gorda
Ridge offshore the U.S. state of Oregon, is an
intermediate-spreading-rate ridge (full-rate 6 cm/year),
which exhibits morphology characteristic of slow-spread-
ing ocean ridges. This variation is attributed to the role of a
hotter mantle beneath typical intermediate- to fast-
spreading ridges, like the East Pacific Rise and the Juan
de Fuca Ridge, producing greater amounts of decom-
pression melting, a thicker crust and a thinner, weaker
lithosphere than that along the Gorda Ridge (Hooft and
Detrick, 1995). The high-temperature Sea Cliff hydro-
thermal field, perched on a fault block on a wall of
northern Gorda Ridge 2.6 km east of the spreading axis
(Rona et al., 1990; VonDamm et al., 2006), is capped by a
hydrothermal crust that is inferred to seal an underlying
VMS deposit. The Sea Cliff deposit is considered
analogous to the basalt-hosted ∼6 million tonne
Turner–Albright VMS deposit in the ophiolite belt of
Oregon that was obducted from a back-arc basin during
the Jurassic period (Zierenberg and Schiffman, 1990;
Zierenberg et al., 1995).

4.2.2. Slow-spreading ocean ridges (full-rate of
spreading b4 cm/year)

The typical cross-sectional form of slow-spreading
ocean ridge crests is an axial (“rift”) valley with a floor
up to 10 km wide, flanked by walls up to several
kilometers high constructed of outward dipping normal
fault blocks, and widths up to several tens of kilometers
between topographic highs at the top of each wall
(Fig. 12). Axial valley cross-sections are generally
asymmetric, manifesting differences in spreading rates,
offsets of the neovolcanic zone of intrusion and ex-
trusion from the geometric center of the valley, and the
occurrence of detachment (normal) faulting that in-
volves extension and exposure of lower crust in a wall of
the axial valley (Tucholke and Lin, 1994; Schroeder and
John, 2004).

Acoustic interference from rough ridge morphology
and bounding faults has impeded interpretation of
seismic records for magma chambers beneath slow-
spreading ocean ridges. A recent multi-channel seismic
survey over active hydrothermal vents in the axial valley
of the central section of a segment encompassing the
Lucky Strike hydrothermal field near 37° North on the
Mid-Atlantic Ridge imaged a bright reflector interpreted
as a magma chamber extending about 5 km along axis
and at a depth of 3 km beneath an axial volcano (Singh
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et al., 2005). The magma chamber is inferred to provide
the magma source for the volcano and the heat source
for the high-temperature hydrothermal circulation.

In contrast, an active-source seismic experiment and
passive record of microseismicity at the TAG hydro-
thermal field situated in the axial valley of the Mid-
Atlantic Ridge near 26°N, indicate that the active high-
temperature sulfide mound situated 2.4 km east of the
spreading axis (Figs. 8 and 9) is offset horizontally by
several kilometers from a magmatic heat source (melt
zone) inferred to lie at least 7 km beneath a neovolcanic
zone on the western half of the axial valley. This
geometry implies fluid flow pathways from the heat
source to the active mound along intervening faults
beneath the axial valley (Kleinrock and Humphris, 1996;
Canales et al., 2007; deMartin et al., 2007). Diversity in
depth of heat sources and geometry of fluid pathways is a
characteristic of slow-spreading ocean ridges.

The frequency of eruptions on slow-spreading ridges
is considered to be hundreds to thousands of years
(Perfit and Chadwick, 1998). The frequency of venting
sites based on plume incidence detected along different
sections of axes of slow-spreading ocean ridges ranges
from about 1 per 400 km to 3 per 100 km (∼1 per
spreading segment) based on a few surveys (Klinkham-
mer et al., 1984; Baker and German, 2004; Fig. 21 in
Baker et al., 2004).

Active high-temperature venting sites and hydro-
thermal deposits diverge from the axial alignment
generally observed at intermediate- to fast-spreading
ridges, and have been found at distances of at least
kilometers off-axis. For example, the Snake Pit hydro-
thermal field occurs on a neovolcanic ridge at the Mid-
Atlantic Ridge axis near 23°N (Fouquet et al., 1993),
whereas the TAG field encompasses actively venting
high- and low-temperature zones at distances between 2
and 8 km to the east of the axis (Rona et al., 1993); the
neovolcanic zone occurs on the western half of the axial
valley (Kleinrock and Humphris, 1996). This diver-
gence of the distribution of actively forming deposits on
slow-spreading ridges from axial linearity indicates the
increased role of faulting in providing extensive path-
ways for charging and discharging hydrothermal sys-
tems. The faults act as conduits to distribute high-
temperature hydrothermal solutions from magmatic heat
sources beneath the axial valley; and lower-temperature
solutions alternatively produced by conductive cooling,
exothermic reactions associated with serpentinization of
peridotites, and by deep penetration to tap geothermal
gradients.

Upper mantle peridotites are especially accessible to
hydration in regions of crustal thinning attributed to low
magma budgets, like the Mid-Atlantic Ridge crest near
15°N (Rona et al., 1987, 1992; Cannat et al., 1992), and/
or tectonic unroofing by detachment faulting (Francis,
1981; Cannat et al., 1992, 1997). Seafloor hydrothermal
systems inferred to be driven primarily by serpentiniza-
tion reactions or deep geothermal gradients, like the
Lost City field situated 15 km west of the Mid-Atlantic
Ridge axis on the north wall of the Atlantis transform
fault at 30°N, precipitate calcium carbonate and mag-
nesium hydroxide from alkaline solutions up to 75 °C
devoid of sulfides and of Fe–Si or Mn oxyhydroxides
(Kelley et al., 2001; Schroeder et al., 2002). Serpenti-
nization reactions can act in concert with magmatically-
driven systems, as inferred for the Rainbow (Fouquet
et al., 1997) and Logatchev (Krasnov et al., 1995;
Mozgova et al., 2005) fields near 36°N and 15°N on the
Mid-Atlantic Ridge, respectively. Analysis of surface
samples from these two sites that involve hydrothermal
circulation in both mafic and serpentinized ultramafic
rocks indicates that the sulfides exhibit higher contents
of Au, Cd, Co and Ni than sulfides from seafloor
hydrothermal sites solely hosted in basalt (Mozgova
et al., 2005).

As a consequence of magmatic and tectonic
differences, sites of high-temperature hydrothermal
venting and mineralization are farther apart and more
irregularly distributed on slow- than on intermediate- to
fast-spreading ocean ridges. However, hydrothermal
fields and VMS deposits tend to be larger on the former
(Rona, 1988; Fig. 28 in Hannington et al., 1995)
although, as noted, large deposits can form at all
spreading rates (Rona, 1988). Reasons for this tendency
include up to a factor of ten longer residence time of a
parcel of oceanic crust near heat sources beneath the axial
valley on slow- than on intermediate- to fast-spreading
ocean ridges, to build large deposits by superimposition of
multiple ore-forming cycles energized by magmatic
cycles on a time scale of hundreds to thousands of years
with fluid pathways maintained by ongoing seismicity
(Rona, 1987). In sum, slow-spreading ocean ridges
exhibit a diversity of crustal structure, heat sources,
geometry and distribution of hydrothermal systems in
comparison to intermediate- to fast-spreading ocean
ridges which typically are more homogeneous with
reference to these features (Karson, 1998; Perfit and
Chadwick, 1998).

4.2.3. Volcanic island arcs
The settings found to be most favorable for con-

centration of massive sulfide deposits at volcanic island
arcs, like those arcs associated with convergent plate
boundaries of the western Pacific, are volcanic craters
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and calderas of seafloor volcanoes in the fore-arc region,
and sites at spreading axes in back-arc basins (Fig. 10;
Ishibashi and Urabe, 1995), including sites where the
spreading axis is rifting continental crust (e.g., Woo-
dlark Basin; Binns et al., 1993). Although the hydro-
thermal processes are similar, the composition of
volcanic rocks varies from basalt of mid-ocean ridges
(MORB) to calc-alkaline felsic lavas (andesite, dacite,
rhyolite) in island arcs. Rhyolite-hosted massive sulfide
deposits may occur in a variety of extensional settings
(Sillitoe, 1982). The metal contents of deposits as-
sociated with the volcanic island arcs of the western
Pacific are systematically higher than those at ocean
ridges (Table 7). This increase in metals is attributed to a
combination of contribution of metals from subducting
oceanic crust (Hedenquist and Lowenstein, 1994), and
to a larger contribution of metals from magmatic fluids,
in addition to those leached from the ocean crust by
circulating seawater (Urabe, 1987; Yang and Scott,
1996, 2002, 2005). Examples of hydrothermal deposits
in volcanic island arc settings in the submarine fore- and
back-arc settings are, respectively.

Fore-arc setting: The Sunrise VMS deposit
(mound ∼400 m in diameter and 30 m high; estimated
9×106 tonnes; water depth 1300 m) is accumulating
from solutions focused by upwelling at the faulted east
wall of the caldera (3.5 km in diameter) of the Myojin
Knoll silicic active fore-arc volcano in the Izu–Bonin
Arc (or Izu–Ogasawara Arc) south of Japan (Fig. 11; Usui
and Glasby, 1998; Iizasa et al., 1999; Glasby et al., 2000;
Yamazaki, 2006a). Highly fractionated hydrothermal
manganese (todorokite) crusts (thickness∼1 cm) lie
along the northern and western margins of the Myojin
Knoll caldera and are found on active and inactive
seamounts associated with the volcanic front in this arc
(Usui and Glasby, 1998). Similar hydrothermal manga-
Table 7
Bulk chemical composition of seafloor massive sulfides from ocean
ridges and back-arc spreading axes (Herzig and Hannington, 1995)

Ocean ridges Back-arc spreading axes

Volcanic-hosted Intra-oceanic Intra-continental

n 890 317 28
Fe (wt.%) 23.6 13.3 7.0
Zn 11.7 15.1 18.4
Cu 4.3 5.1 2.0
Pb 0.2 1.2 11.5
As 0.03 0.1 1.5
Sb 0.01 0.01 0.3
Ba 1.7 13.0 7.2
Ag (ppm) 143 195 2766
Au 1.2 2.9 3.8
nese crusts are broadly distributed on active submarine
volcanoes and at back-arc spreading axes (Usui and
Someya, 1997; Glasby et al., 2000. A deposit within a
∼200 m diameter area of the fissured summit of Conical
seamount (water depth 1050 m) in the fore-arc region
offshore New Ireland (Figs. 11 and 13), contains the first
indications found on the seafloor of gold-rich epithermal-
style vein mineralization hosted in ankaramitic altered
basalt with gold content (maximum 230 ppmAu; average
26 ppm; n=40 random grab samples), comparable to that
of the Ladolam gold deposits beingmined on neighboring
Lihir island (Herzig, 1999; Herzig and Hannington, 2000;
Petersen et al., 2002). On Brothers submarine volcano in
the Kermadec fore-arc immediately northeast of New
Zealand two relatively large active areas of chimneys and
sub-cropping sulfide (each area∼600 m by at least 50 m)
lie at the faulted margin of the dacitic caldera (basal
diameter∼3 km; floor at water depth of ∼1850 m; de
Ronde et al., 2003a, 2003b, 2005). Neptune Minerals, a
company which holds Prospecting Licenses within New
Zealand's EEZ, reports (http://www.neptuneminerals.
com) that, “Although active SMS (seafloor massive
sulfide)-forming processes are observed in widespread
sulphide chimneys there is no accumulation at or near the
surface of commercial quantity of sulphidemineralization
in the areas drilled”, based on 23 core holes up to 14 m
deep drilled in 2005. Their report identifies the calderas of
Brothers and adjacent Healy submarine volcanoes as
“drilling targets”.

Back-arc setting: The Jade VMS deposit hosted in
altered rhyolite of a caldera-like structure at 1650 m
water depth in the Okinawa Trough intra-continental
back-arc basin (Halbach et al., 1989, 2003) is considered
to be an analog of the type Miocene Kuroko stratiform
massive sulfide deposits hosted in felsic calc-alkaline
volcanic rocks (rhyolite and dacite) of Honshu island,
Japan (Scott, 1980; Urabe, 1987). The PACMANUS
(Papua New Guinea–Australia–Canada–Manus) hydro-
thermal field in the eastern Manus intra-oceanic back-
arc basin of the Bismarck Sea of Papua New Guinea
contains a surface area at least 800 m×3 km of
discontinuous massive sulfide deposits hosted in dacitic
and andesitic volcanic rocks between water depths of
1650 m and 1800 m (Fig. 13; Binns and Scott, 1993).
Ocean Drilling Program Leg 193 studied alteration in
the host rocks of the PACMANUS deposits (Shipboard
Scientific Party, 2002; Bach et al., 2003; Vanko et al.,
2004). In 1997 Nautilus Minerals Corporation, an
Australian mining company, leased two sites in this
field (area 5000 m2; Fig. 13) within territorial waters of
Papua New Guinea from that government to evaluate for
mining (Fig. 13; Broad, 1997; Malnic, 2001;

http://www.neptuneminerals.com
http://www.neptuneminerals.com


Fig. 13. Map showing the location of two tracts of the PACMANUS hydrothermal field containing active and relict massive sulfide deposits (water
depth 1500 to 2500 m) in the Manus back-arc basin in the Bismarck Sea of Papua New Guinea (PNG). The PNG government leases the tracts and
additional areas to Nautilus Minerals Inc., an Australia-based mining company, for exploration and development (modified from Broad, 1997;
Herzig, 1999; Malnic, 2001). The crater of a volcanic seamount (Conical Seamount; water depth 1050 m) in the fore-arc region northeast of New
Ireland contains hydrothermal minerals with variable gold content (Petersen et al., 2002, 2005) comparable with the operational Ladolam gold
deposits on neighboring Lihir island (Herzig and Hannington, 2000).
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International Marine Minerals Society, 2002, 2005).
They report (http://www.nautilusminerals.com, news
releases dated 16 November 2005 and 21 February
2006) that 39 samples dredged in 2005 from inactive
deposits in the “Suzette” area (280,000 m2; now part of
their Solwara-1 Project) contain a weighted average of
15.52 g/tonne Au, 12.24 wt.% Cu, 4.20 wt.% Zn,
1.77 wt.% Pb, and 256 g/tonne Ag.

Volcanic island arcs are clearly favored for initial
potential mining of seafloor VMS deposits by virtue of
the generally higher metal contents of deposits in the
fore- and back-arc settings than those deposits formed at
ocean ridges and the situation of these settings within
the EEZ of sovereign coastal states (Herzig, 1999).

5. Modern and ancient VMS deposits and proximal
low-temperature deposits

5.1. Exploration criteria, setting and genesis

Aspects of active seafloor hydrothermal systems that
have particular potential for elucidating outstanding
questions concerning exploration for and genesis of
ancient VMS deposits pertain to spatial and temporal
interactions of mineralization with tectonic, magmatic,
and biological processes (Skinner, 1997; Scott, 1997;
Hannington et al., 2005; Franklin et al., 2005). The TAG
hydrothermal field situated in the axial valley of the
slow-spreading Mid-Atlantic Ridge in the central North
Atlantic near 26°N, 45°W is selected to address some of
these questions, because it contains an assemblage of
large VMS deposits that have been the subject of
investigation by the international community since
discovery in 1985 as the first hydrothermal field found
on a slow-spreading ocean ridge (Fig. 8; Rona et al.,
1986), refuting the consensus of the scientific commu-
nity at that time that high-temperature hydrothermal
systems could only occur on intermediate- to fast-
spreading ocean ridges. At least four active and relict
hydrothermal zones containing large massive sulfide
mounds (diameter 100 m to ∼1 km) are present in the
field, spanning a radiometrically dated age range of
140,000 years (Lalou et al., 1995, 1998). The state of the
mounds ranges from young-hot to old-cold and
encompasses the evolution of a hydrothermal ore-
forming system from origin to fate as the hydrothermal
zones are formed in the axial valley, uplifted in one wall
of the axial valley and rafted away by the spreading
seafloor. These high-temperature deposits, as well as
proximal low-temperature deposits, lie within a 5 km by

http://www.nautilusminerals.com,
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5 km area of the eastern floor and lower wall of the axial
valley between water depths of 2400 and 3700 m.
Relevant findings at the TAG field are presented in
context of a systematic exploration procedure of
progressively closing range from far to near by sensing
chemical and physical properties of an active hydro-
thermal source and by deciphering the geologic controls
of mineralization (Rona, 1978a, 1983a, and in Table 2 of
Rona, 1999–2000; Fornari et al., 1997), as follows.

5.1.1. Exploration procedure
Approaching the TAG field the first hydrothermal

signal detected is that of weak acid soluble iron and
manganese oxide particles suspended in the water
column at the depth of the Mid-Atlantic Ridge crest
(2000 m) at a distance of 750 km west of the crest. This
may be an integrated signal from hydrothermal fields in
the axial valley of the Mid-Atlantic Ridge transported
westward by deep currents that flow through fracture
zones that breach the walls of the valley (Rona, 1978a;
Fig. 10 in Rona, 1980a). The signal of suspended
hydrothermal particulates detected to the west of the
Mid-Atlantic Ridge is absent to the east of the ridge,
indicating that the deep currents that are transporting the
particulates are unidirectional to the west (Rona, 1980a),
consistent with simulated flow trajectories (Fig. 14.5 in
Speer et al., 2003). Continuing eastward toward the
ridge, the concentration of Fe and Mn in particulate and
dissolved phases and of the conservative primordial gas
3He (expressed as δ3He) released from the mantle
through seafloor hydrothermal systems would be
expected to gradually increase, leading to a neutrally
buoyant hydrothermal plume in the axial valley (Jenkins
et al., 1980). The neutrally buoyant plume between
about 200 and 450 m above the source vents is vertically
connected to the vents by a narrow (ca. 15 m diameter)
buoyant plume discharging from a group of black
smokers vigorously venting high-temperature (365 °C)
solutions (Rona et al., 1986; Klinkhammer et al., 1986;
Rona and Speer, 1989; Speer and Rona, 1989; Edmond
et al., 1995; Rudnicki, 1995; Chiba et al., 2001) from
multiple chimneys. The chimneys top a massive sulfide
mound 200 m in diameter and 35 m high with base at a
water depth of 3670 m on the floor of the axial valley.
Measurements of thermal output of the plume dischar-
ging from the TAG active sulfide mound range from
86 MW (Goto et al., 2003), to 120 MW (Rona et al.,
1993), to 500–940 MW (Rudnicki and Elderfield,
1992), to 1.7 GW (Wichers et al., 2005) with estimated
fluid flux to the neutrally buoyant plume of 1460–
2740 m3 s−1 (Rudnicki and Elderfield, 1992), reflecting
real variations of output with time and different measure-
ment methods. The neutrally buoyant plume discharging
from the active sulfide mound is laterally advected by
tidal forcing and extends tens of kilometers along the axial
valley at an altitude of several hundred meters above the
seafloor (Rudnicki, 1995). The corresponding signal on
the seafloor is a trail of metalliferous sediments produced
by fallout from the water column increasing from a trace
component diluted by normal deep-sea sediment at
distances of tens to hundreds of kilometers to dark
brown, centimeter-scale iron-rich layers in a light tan
carbonate lutite matrix within kilometers of the source
vents (Shearme et al., 1983; Metz et al., 1988), to Fe-rich
(20–40% Fe) red-brown mud near the base of and on the
mound derived from mass-wasting of oxidized sulfides
and settling of suspended particulate matter from the
overlying hydrothermal plume with distinctive isotopic
and REE/Fe distributions (German et al., 1993).

5.1.2. Geologic setting
The TAG active high-temperature sulfide mound lies

2.4 km east of the spreading axis, near the center of a
40 km-long NE–SW-trending spreading segment adja-
cent to a marginal fault at the base of the east wall of the
axial valley. The massive sulfide mound laps onto an
adjacent old pillow mound of similar size (Fig. 8). The
massive sulfide and pillow mounds are situated at the
intersection of axis-parallel with axis-oblique fault
systems within a faulted and fissured zone that occupies
the eastern half of the 7 km-wide axial valley floor
(Karson and Rona, 1990; Kleinrock and Humphris, 1996;
Bohnensteihl and Kleinrock, 1999). The fault intersec-
tions are inferred to act as past conduits for magma and
present conduits for hydrothermal solutions, and are kept
open to fluid flow by ongoingmicroearthquake seismicity
(Kong et al., 1992; Smith et al.; 2005; deMartin et al.,
2007). Patchy glassy sheet flows with dimensions of tens
of meters and a volcanic seamount lie along the spreading
axis (Eberhart et al., 1988). A neovolcanic zone that
exhibits constructional volcanic morphology of linear
volcanic ridges and hummocks occupies the western half
of the axial valley (Kleinrock and Humphris, 1996).

5.1.3. Structure
The walls of the axial valley are asymmetric with

reference to morphology and crustal structure. The east
wall that hosts the TAG field is higher (2400 to 3600 m),
steeper, and smoother than the west wall (2800 to
3600 m), where hydrothermal activity is absent (Karson
and Rona, 1990; Kleinrock and Humphris, 1996). The
crustal structure of the west side of the axial valley is
typical of other volcanically constructed Mid-Atlantic
Ridge segments, but the eastern side is underlain by a
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large, high-velocity seismic anomaly indicating the
presence of lower crustal and/or serpentinized upper
mantle rocks at anomalously shallow depths (deMartin
et al., 2007). The central portion of the east wall, where
some of the hydrothermal zones are located, exhibits an
anomalous salient that projects about 3.5 km westward
over the floor of the axial valley. Zonenshain et al.
(1989) observed sheeted dikes and recovered gabbro
from mid-depth (∼3000 m) on the east wall indicating
vertical uplift of ocean crust and upper mantle. They
ascribed this uplift to expansion by serpentinization of the
underlying peridotites of the upper mantle by circulating
hydrothermal fluids accompanied by thinning of the
basaltic layer of ocean crust. A ∼50% deficit of boron
measured in hydrothermal fluids sampled from vents on
the TAG active high-temperature sulfide mound relative
to seawater evidences uptake by hydration during
ongoing serpentinization (Palmer, 1996). Particles of
native nickel in sediments of the active sulfide mound
may be derived from the upper mantle (Dekov, 2006).
Using conservative estimates of the volume of serpenti-
nite Palmer (1996) and Germanovich et al. (2006)
estimate about 100 m of uplift from serpentinization,
which can account for the westward salient in the east wall
but not for the full uplift.

5.1.4. Magnetic signatures of detachment faulting and
hydrothermal alteration

The east wall of the axial valley of the TAG segment
is associated with an elongate axis-parallel low in crustal
magnetization within the normal polarity Brunhes anom-
aly (McGregor et al., 1977;Wooldridge et al., 1992; Tivey
et al., 1996). The active high-temperature sulfide mound
and the relict sulfide mounds of the Alvin zone to the
north (Fig. 8) are located at a transition between the low
and a magnetization high related to the neovolcanic zone
on the western side of the axial valley (Tivey et al., 2003).
The magnetization low at the east wall is modeled as a
product of a 4 km-wide zone of crustal thinning exposing
the gabbros and sheeted dikes observed by Zonenshain
et al. (1989) in the footwall of a detachment fault zone
(Tivey et al., 2003). The modeling indicates that normal
displacement on the detachment fault has produced about
4 kmof horizontal extensionwithin the past 350,000 years
corresponding to the zone of crustal thinning (Fig. 8). The
active and relict zones of the TAG hydrothermal system
are located on the hanging wall of this fault. Seismic
refraction and microearthquake data indicate that the
upper portion of the detachment fault dips west toward
the spreading axis at an angle of ∼20°, passing under the
active sulfide mound. At ∼3 km beneath the seafloor the
detachment fault rolls over into a steep (70°) west-dipping
fault plane that can be traced 7 km downward associated
with microearthquake hypocenters into a region inter-
preted as a melt zone (deMartin et al., 2007). The upper
low-angle section of the detachment fault may be
explained by flexure and isostatic uplift from an initial
high-angle congruent with the deeper portion of the fault
plane (Garces and Gee, 2007). Silica geobarometry of
high-temperature solutions discharging from the active
sulfide mound indicates that the fluids last equilibrated
with quartz at 2 to 3 km below the seafloor (Campbell
et al., 1988), possibly at a mid-crustal magma body fed by
magmatic intrusions from the inferred melt zone at and
below7 kmbeneath the seafloor. Seismic refraction data, a
seismic velocity model, and the distribution of earthquake
hypocenters effectively preclude large crustal magma
chambers (Canales et al., 2007; deMartin et al., 2007).
However, smaller crustal magma bodies unresolved by the
seismic studies may be periodically replenished from
larger deep sources. Time-series measurements of high-
temperature fluid chemistry at the TAG active sulfide
mound (years sampled: 1986, 1993, 1995, 1998, 2003;
Edmond et al., 1995; Edmonds et al., 1996; Chiba et al.,
2001; Parker et al., 2005) indicate compositional stability
which, in turn, may relate to depth of circulation. Direct
observations suggest that the volume flux and discharge
zones of the mound are changing on a time scale of years.
Normal displacement on the detachment fault accommo-
dates lithospheric extension of the east side of the axial
valley. Movement on the detachment fault zone may
episodically increase the permeability of the hanging wall
preferentially reactivating the hydrothermal zones that lie
on the hanging wall with mostly asynchronous hydro-
thermal events and at least one synchronous field-wide
hydrothermal event (∼50,000 years ago).

Short-wavelength (b100 m) lows in magnetic intensity
were measured near the seafloor associated with the active
high-temperature sulfide mound and with two of the relict
sulfide mounds adjacent to the broader more intense
magnetic low at the east wall. These short-wavelength
magnetic lows are attributed to hydrothermal alteration of
the magnetic mineral component in pipe-like up-flow
alteration zones under the individual mounds through the
host basalts, as distinguished from Curie point effects
(Rona, 1978b; Tivey et al., 1993, 1996). A similarmagnetic
low was measured at the Agrokipia B sulfide ore body in
the Cretaceous Troodos ophiolite of Cyprus and is also
related to hydrothermal alteration of magnetic minerals
(e.g., magnetite) to less magnetic minerals (e.g., titano-
maghemite, sphene) in cores recovered from drill holes in
the deposit (Johnson and Pariso, 1987). Magnetic lows
have been recorded at certain other ancient VMS deposits,
such as Kuroko-type massive sulfides (Scott, 1980).

http://dx.doi.org/10.1130/G23718A
http://dx.doi.org/10.1130/G23718A
http://dx.doi.org/10.1130/G23718A
http://dx.doi.org/10.1029/2007GC001629
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Thus, the asymmetric uplift, detachment fault zone, and
salient in the east wall of the TAG segment of the axial
valley are interrelated products of tectonic extension and
serpentinization (deMartin et al., 2007;Germanovich et al.,
2006). Pathways for fluid circulation intermittently opened
by tectonic activity are inferred to have tapped multi-level
magmatic heat sources to drive hydrothermal episodes that
deposited the assemblage ofmassive sulfidemounds of the
TAG hydrothermal field within the overall structural
control of the detachment fault zone and intersections of
the zone with cross faults, as inferred for many ancient
VMS deposits (Figs. 12 and 19 in Cox et al., 2001; Cox,
2005; Fig. 13 in Franklin et al., 2005). The mantle uplift,
crustal thinning, and long-wavelength magnetic low on a
scale of kilometers to tens of kilometers associatedwith the
entire TAG field and the short-wavelength magnetic lows
on a scale of tens to hundreds of meters attributed to
alteration pipes that underlie individual sulfide bodies are
seismically andmagnetically detectable exploration targets
inmodern and ancient VMSdeposits hosted in ocean crust.

5.2. 3-D form and overall composition of TAG active
high-temperature sulfide mound

The three-dimensional form and overall composition
of the active high-temperature sulfide mound on the
floor of the rift valley in the TAG field, was determined
primarily by 17 holes up to 125 m beneath the seafloor
drilled by the Ocean Drilling Program Leg 158 in 1994
(Fig. 9; Humphris et al., 1995a). This mound (200 m in
diameter, 35 m high) contains 3.9 million tonnes of
massive sulfides comprising a lens-shaped body with
∼2% Cu underlain by a stockwork or stringer zone with
∼1% Cu (Humphris et al., 1995b; Herzig et al., 1998;
Hannington et al., 1998; Petersen et al., 2000). The form
and overall composition of the mound is similar to that
of many ancient VMS bodies preserved in ophiolites
(Fig. 9). Analogous VMS deposits include those of the
Troodos ophiolite in Cyprus, the Semail ophiolite in
Oman, and the Newfoundland Bay of Islands ophiolite.
A striking difference from ancient VMS deposits is the
presence in the TAG mound of a significant volume
(∼30%) of anhydrite as matrix of a massive sulfide
breccia in the sulfide lens and as veins in the stockwork
zone. The anhydrite forms by reaction involving
calcium in hydrothermal solutions and sulfate in
seawater entrained within the mound and conductively
heated to temperatures in the stability zone of anhydrite
(N150 °C; Tivey et al., 1995). Dissolution of the
anhydrite due to its retrograde solubility (solution
temperaturesb150 °C) can explain its absence in
many ancient VMS deposits, and the presence of
massive sulfide breccias consolidated by collapse of
anhydrite matrix-supported clasts (Hannington et al.,
1998) and enhanced by local seismicity. The apparent
stratigraphy with depth within the TAG mound from
massive pyrite breccia, to anhydrite-supported sulfide
breccias, though underlying pyrite–silica anhydrite
breccias, to quartz-cemented breccias, reflects a general
process of progressive infilling and replacement of the
breccias by anhydrite, followed by quartz (Fig. 9;
Hannington et al., 1998).

5.3. Zone refinement in TAG active high-temperature
sulfide mound

The bulk of the TAG active sulfide mound is com-
posed of massive pyrite and anhydrite-cemented sulfide
breccias (Fig. 9). Metal enrichment (Cu, Zn, Ag, Au, Sb)
in the mound is restricted to the upper 5 m of the deposit
(Hannington et al., 1998). Internal steep vertical
zonation suggests that a long history of hydrothermal
reworking (at least 10,000 years; Lalou et al., 1998) has
effectively stripped the constituents that are soluble at
lower temperatures from the massive sulfides (Zn, Au,
Ag, As, Pb, Sb) and concentrated them at the top of the
deposit. Zone refining by upwelling of hot (N350 °C)
hydrothermal fluids resulted in a pyritic massive sulfide
body at depth and in the enrichment of selected trace
elements and Zn near the surface of the mound away from
the central high-temperature up-flow zone (Petersen et al.,
2000; Koski et al., 2003). This zonation is similar to the
strong co-enrichment of Cu and Zn observed at the top of
many Cyprus-type deposits (Constantinou and Govett,
1972, 1973), and was actually applied to target mining of
an oxide cap enriched in gold on the mid-Cretaceous
Tambo Grande 1 VMS deposit in northern Peru (Tegart et
al., 2000; J. M. Franklin et al., 2005 and pers. comm.).

5.4. Clustered mode of massive sulfide mounds in the
TAG field

A similar distribution and size of massive sulfide
bodies as that in the TAG field (Fig. 8) is observed in many
ancient VMS deposits. For example, in the Noranda
Archean felsic province of Canada one to three massive
sulfide mounds per kilometer occur on two successive
horizons, where hydrothermal alteration extends into the
lava flows on top of the lower deposits and overprints
younger deposits stacked vertically above the up-flow zone
(Fig. 14; Fig. 14 in Knuckey et al., 1982; Fig. 20 in Galley
et al., 1995; Fig. 26 in Hannington et al., 1995). In
the Cretaceous Troodos ophiolite of Cyprus massive sul-
fidemounds tend to cluster in 5 by 5 km areas like the TAG

http://dx.doi.org/10.1130/G23718A
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Fig. 14. Cross-section (top) of massive sulfide deposits in the Archean
Noranda volcanic complex (∼2.7 thousand million years old) of eastern
Canada showing clustered distribution, stacking of massive sulfide
bodies and underlying alteration pipes (stockwork or feeder zone). Map
view (bottom) of hydrothermal massive sulfide mounds clustered along
an inferred fault intersection in a 2 km×2 km area of theMillenbach vent
field of the Noranda volcanic complex (Knuckey et al., 1982;
Hannington et al., 1995). The size, clustered distribution and the
alteration pipes of the massive sulfide bodies are similar to those of the
TAG hydrothermal field on the Mid-Atlantic Ridge (Figs. 8 and 9).
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assemblage (e.g., Skouiotissa–Phoenix–Mavrovouni–
Apliki, Agrokipia–Kokkinoyia–Memi–Kokkinopezoula,
Kambia–Kapedhes–Peristarka–Pytharochoma, Mathiati–
Sha, Limni–Kinousa–Evoymeni–Uncle Charles; Bear,
1960; Constantinou and Govett, 1972; Rona, 1973;
Geological Survey Department, 1982). In the Hokuroko
district of Japan, the massive sulfide and major vein
deposits tend to form groups with internal spacings of 1 to
2 km, while the groups (e.g., Hanaoka–Matsumine–
Shakanai) have spacings ranging between 8 km (e.g.,
Furotope–Kosaka) and 17 km (e.g., Hanaoka–Furotobe
(Figs. 1 and 3 in Sato et al., 1974; Solomon, 1976). The
Rosebery and Mt. Lyell massive sulfide bodies in western
Tasmania exhibit a linear distributionwith spacing between
bodies of kilometers (Solomon, 1976). The cluster of five
orebodies that comprise the Neves–Corvo VMS deposit of
the Iberian pyrite belt (siliciclastic-felsic setting in
epicontinental back-arc basin; Franklin et al., 2005), exhibit
spacing of hundreds of meters to kilometers (Relvas et al.,
2006).

5.5. Chronology of sulfide mounds in the TAG field

The resolution of radiometric dating precludes
distinguishing hydrothermal events in individual sulfide
bodies of ancient clusters. A combination of Pb- and
U-series isotopes has been applied to radiometrically date
individual sulfide bodies in the TAG field (Figs. 8 and 9;
Lalou et al., 1990). The active sulfidemoundwas initiated
about 50,000 years ago. Since that time, high-temperature
hydrothermal activity has been episodic with active
periods of relatively short duration (tens to hundreds of
years) separated by hiatuses of 3000 to 5000 years (Lalou
et al., 1990, 1993, 1995, 1998; You and Bickle, 1998).
The current high-temperature episode began in about the
year 1930 (Lalou et al., 1990). The evidence for episodic
activity from radiometric dating is consistent with
estimates from thermal and chemical balances based on
direct measurements of the size, chemical composition,
heat flux, and fluid composition of the TAG active sulfide
mound and the apparently analogous size, composition,
and reaction zone of the Skouriotissa VMS deposit on
Cyprus (Humphris and Cann, 2000). They estimated that
about 2×1019 J of energy supplied at high temperature
and extraction of metals from a reaction zone 1–2 km3 in
volume, with the addition of seawater sulfate, can form
the observed massive sulfide deposit consistent with
earlier estimates (Lowell and Rona, 1985). The sulfur
isotope composition of the sulfides (+4.4 to 8.2‰ δ34S;
average 6.5‰) evidences the introduction of heavy
seawater sulfate to the hydrothermal fluid (Petersen
et al., 2000). The 50,000 year hydrothermal event that
initiated the active high-temperature mound is recorded in
the other massive sulfide bodies in the TAG field
indicating that this event was field-wide, while other
events apparently affected individual mounds separately.

5.6. Proximal low-temperature deposits in the TAG field

A zone about 3 km in diameter encompassing patchy
low-temperature Fe–Si and Mn oxyhydroxide deposits
and diffusely venting low-temperature (b25 °C) solu-
tions lies within the detachment fault zone on normal
fault blocks of the east wall of the rift valley 5 to 8 km
east of the spreading axis and 3 km east of the active
sulfide mound in the TAG field (Fig. 8; Rona et al.,
1984; Thompson et al., 1985; Humphris et al., 2003).
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The isolated position of the zone at mid-depth (2300 to
3100 m) on the east wall and the low-temperature
venting and mineralization suggests that the heat source
is magmatic with conductive cooling of solutions during
flow along kilometers-long fault pathways produced by
the detachment faulting (Fig. 8). The deposits primarily
comprise manganese oxides as laminated crystalline
birnessite up to several centimeters thick exhibiting ex-
treme fractionation (40% Mn with only trace amount of
other metals in contrast to hydrogenetic deposits; Scott
et al., 1974) and relatively rapid radiometrically mea-
sured deposition rates (∼200 mm/million years) one to
two orders of magnitude faster than deposition rates of
hydrogenetic manganese crusts and nodules (Scott et al.,
1974). Also present are massive green earthy Fe-rich
silicate (nontronite); and red earthy amorphous Fe-oxides
(Thompson et al., 1985). The manganese oxides range in
age from 0 to 125,000 years (Lalou et al., 1990). A similar
zone of low-temperature deposits and diffuse flow
partially overlies relict massive sulfides along the eastern
margin of the Mir zone where this zone laps onto an old
pillow dome with high heat flow (Fig. 8; Rona et al.,
1996). Manganese oxides with similar hydrothermal
properties (extreme fractionation and relatively high
accumulation rates) occur on active submarine volcanoes
and at back-arc spreading centers in the western Pacific
(Usui and Someya, 1997; Usui and Glasby, 1998). The
TAGandwestern Pacific fractionatedmanganese deposits
differ from the Cyprus umbers that are not fractionated
and are interpreted as fallout from distal smokers, rather
than direct precipitates from low-temperature vents
(Boyle, 1990). Many of the largest manganese deposits
in the geologic record occur apparently independently of
volcanism (Guilbert and Park, 1985). Low-temperature
mineral facies proximal to high-temperature sulfides, like
those at the TAG field, are vulnerable to dissolution but, if
preserved in the record, may be useful indicators of
proximity to massive sulfides.

6. Seafloor hydrothermal minerals and microbes

The TAG active sulfide mound, as well as other
actively accumulating hydrothermal deposits, host eco-
systems of a growing global inventory of some 712
species of macrofauna (visible to naked eye; 71% of
species known exclusively from vents) including 185
families (14 of these families found at vents only) and 12
phyla that exhibit geographical diversity along the ocean
ridge system and between oceans (Tunnicliffe 1991,
1992; Tunnicliffe and Fowler, 1996; Tunnicliffe et al.,
1998; Van Dover, 2000; Wolff, 2005; Gjerde, 2006;
Deybruyeres et al., 2006). The species diversity at
seafloor hydrothermal vents is low relative to the species
diversity in the deep ocean exclusive of hydrothermal
vents (estimated number of species in excess of 10million
exclusive of microbes, comparable to that in rain forests;
Grassle and Maciolek, 1992; May, 1994; Van Dover,
2000). However, the lower number of species present at
hydrothermal vents is represented by the high diversity of
major animal groups (taxonomic phyla) and high biomass
(Van Dover, 2000). Endemism at hydrothermal vents far
exceeds that found elsewhere in the marine environment.

Chemosynthetic microbes are primary producers at
the base of the food chain that supports the macrofauna
and are hosted in the massive sulfides and volcanic
substrate of sub-seafloor hydrothermal systems (Dem-
ing and Baross, 1993; Kelley et al., 2002; Juniper, 2004;
Sogin et al., 2006). The chemosynthetic aerobic and
anaerobic microbes utilize redox reactions with carbon,
hydrogen, sulfur and metals in the ore-forming solutions
(primarily oxidation of H2S) as a source of chemical
energy utilizing CO2 dissolved in seawater and water to
manufacture carbohydrates for nourishment (Jannasch,
1997). The microbes are inferred to be part of a sub-
seafloor biosphere involving the hydrothermal ore-
forming systems as the source of chemical energy
(Deming and Baross, 1993). Microbial activity may
continue with aging of a VMS deposit. Submarine
volcanic glass exhibits alteration attributed to microbial
activity in the upper 300 m of ocean crust that has been
found in nearly all ocean basins and in certain ophiolites
and greenstone belts back to 3.5 thousand million years
ago (Staudigel et al., 2006).

Studies of the role of the microbes in hydrothermal
mineralization are at an early stage (e.g., Zierenberg and
Schiffman, 1990; Zierenberg et al., 1995; Edwards et al.,
2005; Southam and Saunders, 2005). The identification
of structures interpreted as vent worms and other macro-
biota in certain ancient massive sulfide bodies indicates
that microbial interactions have been associated with
hydrothermal mineralization through geologic time
(Banks, 1985; McGoldrick, 1999; Rasmussen, 2000;
Fallick et al., 2001; Little and Vrijenhoek, 2003; Boyce
et al., 2003).

The microbes are a living resource of value to science
and to industry (Fenecal, 1993, 1996; Jannasch, 1995;
Cary et al., 2004). Analysis of their genomes indicates
that certain of the heat-loving microbes (thermophiles;
domains Archaea and Bacteria) exhibit genetic char-
acteristics that place them at the base of the tree of life
and that their study may elucidate the origin of life
(Russell et al., 2005). Enzymes found in certain of these
microbes in terrestrial and submarine high-temperature
hydrothermal systems are already employed to replicate
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DNA for forensic and other genetic “fingerprinting”
purposes (polymerase chain reaction). Emerging applica-
tions include high-temperature–pressure industrial pro-
cesses such as enhancing flow in deep oil wells, and use in
detergents and food preservatives. Bioactive compounds
produced by certain of the microbes are being tested as
pharmaceuticals with potential for treatment of cancer and
other diseases. The microbes themselves are bioreactors
with potential applications such as enhancing the refining
of metallic mineral ores. The fact that certain of these
microbes are being utilized commercially before the
seafloor hydrothermal mineral deposits that host them is
cited as, “the deepest of ironies” (Glowka, 1996).

Scientific, legal, and policy aspects of bioprospecting
for genetic resources at hydrothermal vents and other
settings in the international Area of the ocean beyond
the limits of national jurisdiction are presently outside
the scope of the UNCLOS (Arico and Salpin, 2005;
UNU-IAS, 2005; UNEP/GRID-Arendal, 2006). Delib-
erations are underway to extend UNCLOS to encom-
pass biological resources including conservation and
sustainable use of genetic resources of the international
Area, possibly through the United Nations Convention on
Biological Diversity that entered into force in 1993
(Glowka et al., 1994). Research protocols are being
instigated to sustain living and non-living resources at all
seafloor hydrothermal sites (International Marine Miner-
als Society, 2001a,b; InterRidge, 2006; Devey et al.,
2007). Marine Protected Areas are being initiated where
hydrothermal sites are present within the EEZ of coastal
nations (e.g., Mullineaux et al., 1998; Mann Borgese,
1998; SOPAC, 1999; Dando and Juniper, 2001; Santos
et al., 2003; Conley, 2006).

7. Magmatic deposits

The metallic mineral potential of ultramafic rocks of
the upper mantle in ocean basins is largely unknown
because of limited exposures and sampling (Fig. 15).
Mantle exposure occurs principally in regions of low
magma budget (volume of magma per unit of plate
separation) and/or heterogeneous magmatic accretion
across axial valleys and detachment faulting on slow-
spreading ocean ridges, as between 14°N and 16°N in
the axial valley of the Mid-Atlantic Ridge (Rona et al.,
1987, 1992; Cannat et al., 1992; Bougault et al., 1993;
Cannat, 1993; Cannat et al., 1997). Tectonic windows to
mantle are less common on intermediate- to fast-
spreading ocean ridges where the magma budget appears
to be consistently higher and magmatic construction
dominates (Karson, 1998). The types of deposits hosted
in gabbros of oceanic lower crust and upper mantle
peridotites (usually serpentinized) are known from
terrestrial exposures, as in the Oman and Troodos
ophiolites (Nicolas, 1995). These types of deposits
include chromite and nickel- and platinum-group element
(PGE)-rich sulfide mineral phases of magmatic origin
(Naldrett, 1989, 2004). According to Arndt et al. (2005),
“magmatic Fe–Ni–Cu+/−PGE sulfide deposits form
where mantle-derived mafic and ultramafic magmas
become saturated in sulfide and segregate immiscible
sulfide liquid, commonly following interaction with
crustal rocks.” Ni–Cu sulfide deposits generally occur at
the base of mafic and ultramafic bodies (Barnes and
Lightfoot, 2005). PGE, chromium and vanadium deposits
on land generally occur in mafic intrusions (Cawthorn
et al., 2005) According to Zhou and Robinson (1997)
concentration of podiform chromites is favored beneath
volcanic island arcs where refractory melts react with
thick sections of old lithospheric mantle.

Magmatic deposits may exhibit clustering on the
same scale as that observed in massive sulfides in ocean
crust. For example, magmatic chromite and sulfide
deposits of the Troodos ophiolite (e.g., Kokkinorosos,
Kannoures, and Hippavlou chromite mines) lie within a
5 km by 5 km area in the Mount Olympus peridotites
(Geological Survey Department, 1982). The apparently
analogous clustering of hydrothermal and magmatic ore
deposits suggests that a spatial and temporal relation may
exist between certainmagmatic ore-forming systems in the
uppermantle and hydrothermal ore-forming systems in the
overlying ocean crust that may be driven by latent heat of
crystallization of the underlying magma bodies. In
addition, magmatic fluids may contribute metals to the
VMS deposits. For example, the native nickel particles
noted in sediments of the TAG active sulfide mound
(Dekov, 2006) may indicate the presence of magmatic
nickel-sulfide deposits in the mantle and lower crust
underlying the TAG hydrothermal field. In this way, some
VMS and magmatic deposits may be cogenetic. Accord-
ing to Naldrett (1989), nickel-sulfide deposits in extensive
Archean greenstone belts like the Abitibi belt of the
Superior Province of the Canadian Shield, are “an enigma
in terms of present day plate tectonics”, with reference to
oceanic or continental settings.

8. Marine mineral deposits from combined terrestrial
and deep ocean sources

8.1. Manganese nodules

Manganese nodules have been the signature marine
mineral since they were first recovered from the deep
seafloor by the HMS Challenger Expedition of 1872–



Fig. 15. Schematic block diagram showing potential occurrence of metallic mineral deposits formed at a spreading axis in ocean crust (shaded) and
the underlying upper mantle (Bonatti, 1981; Rona, 1983b). The deposits are covered by lava flows, deformed by faulting, and transported away from
the axis by ongoing seafloor spreading. Certain VMS deposits (ocean crust) may form together with underlying magmatic deposits (mantle and lower
crust), which supply the heat to drive hydrothermal activity and contribute metals, as discussed in text.
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76 (Murray and Renard, 1891). Mero (1965) brought
attention to the potential economic value of manganese
nodules when he estimated the in situ value of the suite
of metals contained in the nodules without accounting
for the substantial costs of recovery and refining. His
estimates created a “gold rush” mentality at that time,
which contributed to drive the development of the UN
Convention on the Law of the Sea (UNCLOS) to assure
sharing of the anticipated wealth between developed
and developing nations. The golf- to tennis-ball sized
nodules lie on and in sediment on vast expanses of the
abyssal plains that cover some 70% of the ocean basin at
a typical water depth of about 5 km (Fig. 1). Todorokite
is the dominant mineral phase present in the nodules.
The portion of the nodules that protrudes above the
surface of the seafloor sediment is slowly precipitated
hydrogenetically from metals dissolved in seawater,
while the underside accumulates diagenetically from
metals dissolved in the pore water of the sediment over
millions of years (Cronan, 1980; Halbach et al., 1988).
Formation rates vary depending mostly on the flux of
Mn(II) to the deposit site with typical radial growth
rates in the deep ocean between 2 and 10 mm/million
years (Morgan, 2000). Calculation of geochemical
mass balances indicates that fluxes of Mn from river
input and from seafloor hydrothermal discharge are
approximately equal (Edmond et al., 1979), and that the
flux from each source is sufficient to account for the Mn
in nodules (combined with lesser amounts of other
metals). The resulting mixture of Cu, Ni, Mn, Co, and
Fe in the nodules varies in different regions of the
seafloor related to proximity to sources including rivers,
hydrothermal vents, and plankton that take up the
metals in the photic zone (upper ∼300 m of the water
column). The metals are released where the tests and
fine-grained inorganic materials incorporated into the
fecal matter of the plankton accumulate in seafloor
sediment, enhanced by high surface productivity in
equatorial zones (Table 8; Seibold, 1978; Cronan,
1980). The metals are reduced through consumption by
benthic biota, and adsorbed on the manganese oxide
surfaces of the nodules (Verlaan et al., 2004). The total
amounts of Ni, Co, and Mn contained in manganese
nodules globally are considered to exceed terrestrial
reserves, while terrestrial reserves of Cu are considered
to exceed those in the nodules (Thiel et al., 1997). The
nodules also contain trace quantities of almost all the
metallic elements in seawater (Au, Ag, Pt, Ti, Mo, Zn,
etc.). Heterotrophic bacteria capable of mobilizing and
immobilizing manganese have been identified on
manganese nodules (Chandramohan et al., 1987). A
number of studies have been made of the environmental
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impact of mining the nodules (e.g., Burns, 1980;
Sharma, 2005). The vast two-dimensional distribution
of manganese nodules on abyssal sediment has yet to be
recognized in the geologic record.

Between 1974 and 1982, several consortia of private
companies and government organizations spent at least
$US 1 billion in failed ventures to mine manganese
nodules. The failures are attributed to inflated evaluations
of the potential resource, high costs of metallurgical
extraction, political interference, and drops inmetal prices
(Glasby, 2000, 2002; Scott et al., 2006). In 2001, the ISA
granted to seven national and industrial groups of
“pioneer investors” (P.R. China, Japan, Korea, France,
Interoceanmetal Joint Organization, Russian Federation,
Germany) exclusive 15-year exploration contracts for
tracts of the region of the most prospective manganese
nodules (combined Cu, Ni, Co contentN2.5% by weight,
abundanceN10 kg m−2) between the Clarion and
Clipperton fracture zones in the eastern equatorial Pacific
Ocean (Fig. 16; Morgan, 2000; International Seabed
Authority, 2001b). This grade is similar to that of
terrestrial Ni–Cu sulfide ore such as Sudbury, Ontario,
Canada (Exon et al., 1992; Scott et al., 2006). Preliminary
assessment suggests that at least 34 thousand million
tonnes of these deposits occur within the Clarion-
Clipperton zone, containing 7.5 thousand million tonnes
of manganese, 340 million tonnes of nickel, 265 million
tonnes of copper and 78 million tonnes of cobalt (Table
6.3 in Morgan, 2000). A similar procedure by the ISA
granted India 1,500,000 km2 in the Central Indian Ocean
(Fig. 16; Jauhari and Pattan, 2000).

Assuming a nodule recovery efficiency of 70% with
the first generation ofmining technology, the area covered
would be ∼1 km2/day, or 6000 km2 over the 20-year life
Table 8
Average concentration of metals in manganese nodules from different
oceans (Ghosh and Mukhopadhyay, 2000)

Element Atlantic Pacific Indian World oceans

Manganese (wt.%) 13.25 20.10 15.25 18.60
Iron 16.97 11.40 14.23 12.40
Nickel 0.32 0.76 0.43 0.66
Copper 0.13 0.54 0.25 0.45
Cobalt 0.27 0.27 0.21 0.27
Zinc 0.12 0.16 0.15 0.12
Lead 0.14 0.08 0.10 0.09
Iridium (ppm) 9.32 6.64 3.48 –
Uranium (ppm) 7.4 7.68 6.20 –
Palladium (ppm) 5.11 72 8.76 –
Thorium (ppm) 55.00 32.06 40.75 –
Gold (ppb) 14.82 3.27 3.59 –
of a mine site (Thiel, 1991; Thiel et al., 1997). As a
potential resource, manganese nodules contain about 10%
of known land reserves of copper. Manganese constitutes
25 to30% of the higher grade nodules and is an essential
element in steel making and other industrial uses. The key
constituent for potential commercial extraction from the
nodules is nickel, which occurs in concentrations between
1.2 and 1.45 wt.% in the Clarion-Clipperton zone (CCZ)
deposits (Scott et al., 2006). Krigue-block calculations
estimate 340×106 tonnes of nickel in the CCZ nodules
that could potentially provide a significant proportion of
world land production estimated at 900,000 tonnes/year in
1998 (Table 6.3 and reference in Morgan, 2000).
Environmental guidelines for prospecting and exploration
of nodules have been developed by the ISA (International
Seabed Authority, 1999), although mining awaits favor-
able market conditions vis-à-vis sources on land like the
Voisey's Bay Ni–Cu–Co deposit in Labrador, Canada
(Naldrett, 2000).

8.2. Cobalt-rich ferromanganese crusts

Like manganese nodules, cobalt-rich ferromanganese
crusts of the deep ocean precipitate hydrogenetically
over millions of years from metals dissolved in cold
ambient seawater derived from terrestrial dissolved
input and seafloor hydrothermal discharge (Hein and
Morgan, 1999; Hein et al., 2000; Hein, 2004). The
crusts grow at rates of b1 mm to about 10 mm/million
years. The slow growth rates allow for adsorption of
large quantities of trace metals by the oxyhydroxides at
the crust surface (Hein et al., 2000). The crusts are nearly
ubiquitous on hard-rock substrates that have been swept
clean of sediments over millions of years by ocean
currents on seamounts, ocean ridges, plateaus and abyssal
hills. The most favorable setting for the occurrence of
these crusts lies in the region of the volcanic island arcs of
the central equatorial Pacific and on volcanic seamounts
in the equatorial Indian Ocean where extensive volcanic
substrates exist (Figs. 1 and 11; Banakar et al., 2000; Hein
and Morgan, 1999; Hein et al., 2005).

The metals in the crusts comprise cobalt, nickel,
platinum, and titanium in addition to iron and manga-
nese depending on proximity to different sources
(Table 9). These metals accumulate to thicknesses up
to about 25 cm in crusts on the hard-rock substrates
between ocean depths of 400 and 4000 m, encompassing
the oxygen minimum zone depleted in oxygen by decay
of sinking planktonic organisms. The mean dry bulk
density of the crusts is 1.3 g cm−3, mean porosity is
60%, and the high mean surface area (300 m2 g−1)
enhances adsorption. The dominant crystalline phase of



Fig. 16. Maps showing manganese nodule contract areas in the Clarion-Clipperton zone of the northeastern equatorial Pacific Ocean (top) and of the
Indian Ocean (bottom; courtesy of the International Seabed Authority).
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the crusts is ferruginous vernadite (Fe-rich δ-MnO2) and
X-ray amorphous iron oxyhydroxide, with incorporated
detrital minerals such as quartz, feldspar, pyroxene,
phillipsite, and authigenic carbonate fluorapatite. Most
thick crusts that formed in the open Pacific consist of a
phosphatized older growth generation underlying a
younger non-phosphatized generation (Hein et al.,
2000). Cobalt in the crusts (range 0.5 to 2 wt.%; average
0.7%) is enriched by a factor of two to five times its typical
concentration in manganese nodules and is the primary
value metal in the crusts, although minor amounts of V,
Mo, Pt, Ti, Ce and other rare-earth elements, Zr, Ni, Te, Tl
and Cu could be recovered as byproducts (Hein et al.,
1986; Halbach et al., 1988). Cobalt, Ni and Pt contents are
highest in crusts from the central Pacific and lowest in
crusts from spreading centers in the southeast Pacific, the
continental margins, and volcanic island arcs of the
western Pacific (Hein et al., 2000). Cobalt contents in
Atlantic and IndianOcean crusts are roughly equivalent to
those in crusts from the westernmargin of North America.
An estimated 25% of the annual global need for cobalt
could potentially be produced from a single mine site on a
volcanic seamount (Mangini et al., 1987; Hein et al.,
2000).

A technique is needed to systematically map the
thickness of the crusts over large areas. Recovery of the
crusts in terms of removal and refinement is more
challenging than that of manganese nodules that lie loose



Table 9
Range of mean concentration of metals in cobalt-rich ferromanganese
crusts from the Pacific, Atlantic, and Indian oceans (Hein et al., 2000)

Element Range

Iron (wt.%) 15.1–22.9
Manganese 13.5–26.3
Nickel (ppm) 3255–5716
Copper 713–1075
Cobalt 3006–7888
Zinc 512–864
Barium 1494–4085
Molybdenum 334–569
Strontium 1066–1848
Cerium 696–1684

Table 10
Eocene global plate reorganization (55 to 34 million years ago; Rona
and Richardson, 1978)

Worldwide total length (km) Before After Net change

Convergent plate boundaries
(subduction and collision)

52,000 74,500 +22,500

Convergent plate boundaries
(collision)

2500 19,000 +16,500

All divergent plate boundaries 50,000 50,000 0
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on sediment, or massive sulfides, that form compact
mounds, because the thin crusts are difficult to separate
from the large areas of hard-rock substrate to which they
adhere both physically and in terms of refining (Yama-
zaki, 2006b). Like manganese nodules preliminary
environmental impact and engineering studies of ferro-
manganese crusts have been undertaken, and potential
mining awaits additional studies and favorable market
conditions. Analogs of cobalt-rich ferromanganese crusts
have yet to be recognized in the geologic record.

9. Discussion

9.1. Marine minerals and plate tectonics

Processes at plate boundaries have been effectively
applied as a global-scale framework to classify certain
types of ancient mineral deposits presently known from
their occurrences on land (Table 2; Mitchell and Garson,
1981; Sawkins, 1990). As Skinner (1997) points out,
numerous papers have recognized the increased fre-
quency of mineralizing events related to tectonic
changes in the lithosphere through geologic time (e.g.,
Damon and Mauger, 1966; Song, 1983; Meyer, 1988;
Titley, 1993; Groves et al., 2005) and at peak times in
the Wilson cycle of supercontinent aggregation (Barley
and Groves, 1992; Kerrich, 1992). However, the
challenge remains to bridge the gap in order to elucidate
how the settings relate to the geologic controls of in-
dividual deposits on regional and local scales (Skinner,
2004). A step in this direction is to relate mineral occur-
rences to reorganization of plate motion that occurs on a
global scale at intervals of tens to hundreds of millions
of years, and is ongoing on a local scale.

A particularly promising time to search for relations
between plate tectonics and mineralization is a global
plate reorganization that occurred during the Eocene
epoch (55 to 34million years ago). The preservation of the
record of plate motions in the magnetic polarity reversal
sequence in oceanic crust of Eocene age make this the
most complete documentation of a global plate reorgani-
zation in geologic history (Rona and Richardson, 1978;
Rona, 1980b). The Eocene plate reorganization involved
an initial seven-fold increase in length of collisional
convergent plate boundaries oriented east–west to
accommodate north–south convergence between the
Eurasian, African and Indian plates primarily in the
region of the former Tethys Sea (Table 10). The plate
motion then reoriented to predominantly east–west
accommodated by enhanced subduction in zones around
the Pacific. Resistance to south–north convergence by the
increase in length of collisional convergent plate
boundaries apparently fed back to the mantle convection
cells driving the plates, forcing the cells to reorient to the
east–west direction of least resistance (Rona and
Richardson, 1978; Anderson, 2002). In other words,
mantle convection cells drive the plates, but stress fields
produced by interaction of the lithospheric plates are
inferred to orient the cells in a self-organizing system.
Emerging relations between mineralization and plate
tectonics during the Eocene plate reorganization include
the following:

(1) The erosion associated with the Alpine–Himalayan
mountain building driven by the collisional plate
boundaries along the former Tethys Sea increased
both the particulate and dissolved terrestrial input to
the ocean, with implications for formation of
fluviatile and marine placer deposits and for contri-
bution of dissolved material to form precipitates
(phosphorites, manganese nodules, cobalt–ferro-
manganese crusts).

(2) More VMS deposits formed (1.0/million years)
during the Eocene epoch than at any other time
except the Miocene epoch (1.4/million years) and
the Ordovician period (1.4/million years; the time
of an earlier global plate reorganization) based on
analysis (Figs. 7 and 8 in Rona, 1988) of a com-
pilation of information on known Archean,
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Proterozoic, and Phanerozoic VMS deposits hosted
in volcanic rocks presently on land (508 deposits;
Mosier et al., 1983; age-frequency distribution of
deposits uncorrected for exhumation; Kesler and
Wilkinson, 2006). Paleomagnetic, geochemical,
and tectonostratigraphic evidence indicate that
plate tectonics has been active at least since
3.8 thousand million years ago (Kusky, 2004;
Cawood et al., 2006; Furnes et al., 2007). Massive
sulfide deposits hosted in rhyolitic rocks inferred to
have formed in volcanic island arc- and rift-related
tectonic settings (56%of 508 deposits) predominate
over basalt- and sediment-hosted massive sulfides
inferred to have formed in mafic rocks of ocean
ridges (b26% of 508 deposits).

(3) The global incidence of VMS deposits increased in
volcanic island arc systems of the western Pacific
related to the continuation and lengthening of
subduction zones during the Eocene plate re-
organization (Mitchell and Bell, 1973; Sawkins,
1990; Hall, 2002). Ophiolites were emplaced at sites
along collisional convergent plate boundaries in the
Alpine–Himalayan belt (Ding et al., 2005) and other
localities (Dilek andRobinson, 2003), increasing the
prospects for VMS and magmatic deposits of the
ocean crust and upper mantle in the ophiolites.

(4) Porphyry copper–molybdenum–gold deposits
increased in incidence along the western margin
of North America (Sillitoe, 1976) and belts of
these deposits formed along the western margin
of South America (Sillitoe and Perello, 2005;
Fig. 2) correlate with the change to a large east–
west component of Eocene plate motion and
enhanced subduction around the Pacific. Porphyry
deposits formed in the western North Pacific and
South Pacific (Garwin et al., 2005), eastern and
western Caribbean, and Mediterranean regions
(Sawkins, 1990), also correlate with the increase
in convergent plate motion and subduction in the
Eocene.

(5) A global change in stress field from north–south
compression to east–west extension associatedwith
the Eocene reorientation of plate motion had
regional to local effects on mineralization. For
example, Seedorff and Barton (2004) report that
Carlin-type Au–Ag deposits in northeastern
Nevada “formed between 42 and 36 million years
ago, following a long period of contraction and
crustal thickening of the miogeocline. The ages of
deposits coincide with the initiation of extension in
this region…”. According to Cline et al. (2005),
“North-northwest-trending paleo-normal faults and
northeast-trending paleo-transform faults, preferen-
tially dilated during Eocene extension, controlled
the regional position, orientation, and alignment of
the deposits”. Dikes oriented north–south from an
underlying plutonic complex intruded the north–
south Carlin trend between ∼40 and 36 million
years ago consistent with east–west extension
(Ressel and Henry, 2006). The igneous activity is
inferred to have provided magmatic heat to drive
mineralization. This change from north–south
compression to east–west extension as part of the
Eocene global plate reorganization may have
opened pathways for magmatism and associated
mineralization at terrestrial and marine sites in this
and other regions of the world. The Eocene Carlin-
type sediment-hosted disseminated Au deposits of
Nevada (hundreds to thousands of tonnes Au) are
the largest Au deposits known after those of the
Archean Witwatersrand region of South Africa
(Cline et al., 2005). As a product of a global plate
reorganization, other regions ofCarlin-type deposits
may remain to be found guided by now largely
known exploration criteria. For example, like the
Carlin deposits the Muteh gold orebodies in westen
Iran are inferred to have been emplaced along
northwest-oriented normal faults (in exhumed
metamorphic rocks) during or after late stages of
Eocene (55.7–38.5 million years ago) east–west
brittle extension and intrusive activity, in this case
related to the closure of the Tethys ocean during late
stages of the Zagros orogeny (Moritz et al., 2006).

10. Perspective and conclusions

Marine minerals are being selectively developed as
resources with sand and gravel recovery economically
leading that of placer diamond, tin, and gold (Figs. 1–7;
Scott, 2001). Seafloor VMS deposits, manganese
nodules, and cobalt–ferromanganese crusts are being
evaluated as potential future resources under national
(EEZ) and international (UNCLOS and ISA) regimes
(Figs. 11, 13 and 16). The deep seabed has the potential
to become a major source of metals including Ni, Cu,
Co, Mn, Pb, Pt, Li, Au and Ag that are essential to
developed and developing economies (Broadus, 1987;
Herzig, 1999; Antrim, 2005, 2006). The value of
precious metals (Au, Ag, Pt), as well as the supply of
those metals that is dwindling due to use relative to their
abundance in the lithosphere (Pt, Cu, Zn; Gordon et al.,
2006) will selectively drive marine mining. The
technologies for extraction of placers including dia-
monds, and of aggregates are operational. For
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phosphorites, manganese nodules, cobalt–ferromanga-
nese crusts and massive sulfides (near spreading axes)
the technology is within reach (Scott, 2001; Scott et al.,
2006). Presently inaccessible massive sulfide deposits in
older oceanic crust away from spreading axes in ocean
basins and back-arc basins and as well as Ni–Cu–PGE
magmatic sulfides in lower crust and upper mantle at
and away from spreading axes will become accessible as
appropriate exploration and exploitation methods are
developed in response to scientific interest and eco-
nomic need. Recovery of fresh water from seawater may
become the ultimate marine mineral resource.

Skinner (1997) has posed questions of what we do
and do not know about ancient hydrothermal mineral
deposits. It is instructive to expand his questions to
include all marine minerals including seafloor VMS
deposits, to consider how what we are learning from
investigation of various types of marine minerals may
elucidate their ancient counterparts, as follows:

What we do know: Sources (solutions for hydro-
thermal deposits; other sources for other types of
deposits), channel-ways or transport paths, and pre-
cipitation or deposition:

(1) For marine placer deposits, we can clearly follow
fluviatile transport, and mechanical sorting between
source and sink for diamond deposits from kimber-
lites in southern Africa to the southwest African
continental margin; from alluvial gold to the shelf in
northwestern North America; from granites to the
continental shelf for cassiterite deposits of southeast
Asia. We can predict prospective regions of placer
deposits from the juxtaposition of mineralized zones
and likely transport paths and depositional areas, as
for the western margin of Central and South
America; Figs. 2–7).

(2) For seafloor VMS deposits, we can sample and
measure physical and chemical properties of active
hydrothermal circulation systems and their host
rocks, decipher tectonic and magmatic controls that
concentrate the deposits at sites at plate boundaries,
and apply this understanding to guide exploration for
ancient deposits that have been emplaced on land.
For example, insights gained from investigation of
active seafloor VMS deposits have contributed to a
recent surge of discoveries of ancient VMS deposits
in P. R. China (Rona and Hou, 1999; Hou et al.,
1999). VMS deposits in oceanic lithosphere that
formed at seafloor spreading axes and have been
transported away along flow lines of spreading
remain an exploration challenge. Exploration criteria
for large relict off-axis VMS deposits can be
developed from characteristics of large deposits at
spreading axes, such as magnetic signatures of
crustal thinning associated with detachment faults
and of hydrothermal alteration as deciphered at the
TAG hydrothermal field. The magnetic low of
hydrothermal alteration, first identified in mafic
crust formed at ocean ridges (Rona, 1978b), also
works in felsic crust formed at convergent plate
boundaries, although the signal strength is lower (M.
A. Tivey, pers. comm.).

(3) Magmatic deposits (chromite and Ni–Cu–PGE
sulfides) may be next to be discovered in areas
where low magma budgets and detachment
faulting have resulted in exposure of lower crust
and upper mantle on slow-spreading ocean ridges
(Fig. 15); these deposits hosted in gabbros,
peridotites and serpentinites may contribute to
elucidation of the nature of vast greenstone belts
and their deposits (e.g., Abitibi-type deposits;
Naldrett, 1989, 2004).

What we do not know: Geological age and duration of
an ore-forming system, the bounds and magnitudes and
depth of ore-forming systems, the importance of source-
rock enrichment, and the constraints of space and time.
Contemporary marine mineral deposits have an advan-
tage over ancient deposits in providing at least preli-
minary answers to these questions, as follows:

(1) Quaternary sea level fluctuations were particularly
important for the concentration of present placer
deposits (2 to 0 million years), although erosion of
source rocks like the Cretaceous kimberlites of
southern Africa and the gold-bearing rocks of
northwestern North American may have occurred
on much longer time scales.

(2) Manganese nodules and cobalt–ferromanganese
crusts have accumulated hydrogenetically over
millions of years from a combination of terrestrial
riverine and seafloor hydrothermal input of metals,
but apparently lack analogs in the geological record.

(3) Investigation of seafloor VMS deposits by surface
and sub-surface (drilling and coring) methods is
yielding answers to these questions. An example
presented is the TAG hydrothermal field that
comprises a cluster of large massive sulfide mounds
occupying a 5 by 5 km area of the axial valley of the
Mid-Atlantic Ridge. As noted, the sulfide mounds
progressively range in age/stage from young-hot to
old/cold. The mounds were formed episodically at
radiometrically-determined intervals of high-tem-
perature activity (tens to hundreds of years),
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alternating with intervals of quiescence (thousands
of years) for at least 100,000 years, with a hydro-
thermal event that was field-wide (50,000 years) and
other events apparently limited to individual
mounds. The primary heat source for high-tempera-
ture hydrothermal activity continues to be magmatic
with subsidiary contribution from lower-tempera-
ture exothermic sources. The superposition of
multiple episodes of high-temperature hydrothermal
activity at intervals of thousands of years has built
the TAG active sulfide mound. Zone refinement by
circulation within the mound has concentrated the
interesting metals in the upper few meters. The
alignment and episodic timing of mineralization of
the assemblage ofmounds in the TAG field is related
to changing circulation pathways betweenmagmatic
heat sources and the deposits apparently controlled
by the development of a major detachment fault in
the wall of the axial valley accompanied by ongoing
seismicity that maintains circulation pathways. The
size, grade, zone refinement and 3-D anatomy of the
TAG active high-temperature sulfide mound and the
spatial distribution of the assemblage of sulfide
mounds in the TAG field are analogous to ancient
clustered counterparts (Figs. 8, 9 and 14) and
provide a key to understanding how such clusters
form. Accordingly, the most prospective seafloor
VMS deposits for marine mining will be those old
enough to have grown and to have been refined
through superposition of multiple high-temperature
hydrothermal episodes. Large, high-grade mineral
deposits of any type are anomalies that require
special spatial and temporal conditions to concen-
trate. Marine mining is anticipated to begin
selectively for VMS and other types of marine
minerals when anomalously large volume high-
grade deposits can be mined at a profit. Exploration
to find anomalously large deposits and drilling to
determine grade and tonnage are technically
challenging and costly at sea. Large, high-grade
VMS deposits are not renewable resources because
they take thousands of years to form.

(4) The theory of plate tectonics early provided a
framework for mineralization on the scale of global
plate boundaries, and its application is gradually
converging to elucidate geologic controls of mine-
ralization from regional to local scales of plate
reorganization with the potential to eventually elu-
cidate controls on the scale of individual deposits.
Investigation of the spectrum of marine minerals as
active analogs of types of ancient mineral deposits
is contributing to this convergence.
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